Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 53 papers

KAI1/CD82 Genetically Engineered Endothelial Progenitor Cells Inhibit Metastasis of Human Nasopharyngeal Carcinoma in a Mouse Model.

  • Gengming Wang‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2018‎

BACKGROUND Endothelial progenitor cells (EPCs) are regarded as promising targeted vectors for delivering therapeutic genes or agents in cancer therapy. The purpose of this study was to investigate the role of intravenously administered KAI1/CD82 genetically transduced EPCs in the tumorigenesis and metastasis of nasopharyngeal carcinoma (NPC). MATERIAL AND METHODS EPCs were isolated from human umbilical cord blood, expanded in culture, and stably transduced with lentiviral vectors expressing KAI1/CD82. The KAI1/CD82 EPCs were injected intravenously into nude mice bearing human NPC xenografts. Tumor growth and the incidence of liver and lung metastases were observed. Expression of KAI1/CD82 was determined by immunofluorescent staining. RESULTS The NPC model was successfully established. Tumor growth was not suppressed when mice were injected with KAI1/CD82 EPCs (KAI1/CD82 EPCs group) compared with when non-transduced EPCs was present (EPCs group) or the control (1.485±0.234, 1.388±0.204, and 1.487±0.223g, respectively; P>0.05). However, the incidence of lung metastasis was significantly reduced in the KAI1/CD82+ EPCs group compared with the EPCs group and the control group (10%, 55% and 45%, respectively; P=0.005), and there was a significant decrease in the number of metastatic foci on the lung surface (17.50±3.54, 34.27±5.35, and 38.44±9.63 respectively; P=0.007). Moreover, KAI1/CD82 was expressed in lung metastatic foci of the KAI1/CD82 EPCs group, but not in the EPCs group and control group. CONCLUSIONS EPCs can be used as a delivery vehicle for suppressor genes KAI1/CD82 to NPC, and the migration of KAI1/CD82 genetically engineered EPCs can inhibit NPC lung metastasis in a mouse model.


Copper supplementation reverses dietary iron overload-induced pathologies in mice.

  • Tao Wang‎ et al.
  • The Journal of nutritional biochemistry‎
  • 2018‎

Dietary iron overload in rodents impairs growth and causes cardiac hypertrophy, serum and tissue copper depletion, depression of serum ceruloplasmin (Cp) activity and anemia. Notably, increasing dietary copper content to ~25-fold above requirements prevents the development of these physiological perturbations. Whether copper supplementation can reverse these high-iron-related abnormalities has, however, not been established. The current investigation was thus undertaken to test the hypothesis that supplemental copper will mitigate negative outcomes associated with dietary iron loading. Weanling mice were thus fed AIN-93G-based diets with high (>100-fold in excess) or adequate (~80 ppm) iron content. To establish the optimal experimental conditions, we first defined the time course of iron loading, and assessed the impact of supplemental copper (provided in drinking water) on the development of high-iron-related pathologies. Copper supplementation (20 mg/L) for the last 3 weeks of a 7-week high-iron feeding period reversed the anemia, normalized serum copper levels and Cp activity, and restored tissue copper concentrations. Growth rates, cardiac copper concentrations and heart size, however, were only partially normalized by copper supplementation. Furthermore, high dietary iron intake reduced intestinal 64Cu absorption (~60%) from a transport solution provided to mice by oral, intragastric gavage. Copper supplementation of iron-loaded mice enhanced intestinal 64Cu transport, thus allowing sufficient assimilation of dietary copper to correct many of the noted high-iron-related physiological perturbations. We therefore conclude that high- iron intake increases the requirement for dietary copper (to overcome the inhibition of intestinal copper absorption).


Protective Effects of Notoginsenoside R1 via Regulation of the PI3K-Akt-mTOR/JNK Pathway in Neonatal Cerebral Hypoxic-Ischemic Brain Injury.

  • Liu Tu‎ et al.
  • Neurochemical research‎
  • 2018‎

Notoginsenoside R1 (NGR1) is a predominant phytoestrogen extracted from Panax notoginseng that has recently been reported to play important roles in the treatment of cardiac dysfunction, diabetic kidney disease, and acute liver failure. Studies have suggested that NGR1 may be a viable treatment of hypoxic-ischemic brain damage (HIBD) in neonates by reducing endoplasmic reticulum stress via estrogen receptors (ERs). However, whether NGR1 has other neuroprotective mechanisms or long-term neuroprotective effects is unclear. In this study, oxygen-glucose deprivation/reoxygenation (OGD/R) in primary cortical neurons and unilateral ligation of the common carotid artery (CCL) in 7-day-old postnatal Sprague Dawley (SD) rats followed by exposure to a hypoxic environment were used to mimic an HIBD episode. We assessed the efficacy of NGR1 by measuring neuronal damage with MTT assay and assessed brain injury by TTC staining and brain water content detection 24-48 h after OGD/HIE. Simultaneously, we measured the long-term neurophysiological effects using the beam walking test (5 weeks after HI) and Morris water maze test 5-6 weeks after HI. Expression of PI3K-Akt-mTOR/JNK (24 h after HI or OGD/R) proteins was detected by Western blotting after stimulation with HI, NGR1, LY294002 (PI3K inhibitor), 740Y-P (PI3K agonist), or ICI 182780(estrogen receptors inhibitor). The results indicated that NGR1 exerted neuroprotective effects by inhibiting neuronal apoptosis and promoting cell survival via the PI3K-Akt-mTOR/JNK signaling pathways by targeting ER in neonatal hypoxic-ischemic injury.


Clematichinenoside AR ameliorated spontaneous colitis in Il-10-/- mice associated with improving the intestinal barrier function and abnormal immune responses.

  • Xue Song‎ et al.
  • Life sciences‎
  • 2019‎

Clematichinenoside AR (AR) is a saponin extracted for traditional Chinese medicine with the effects of improving the expression of tight junction (TJ) proteins and mediating anti-inflammatory activities. However, its effect on Crohn's disease (CD) is still unknown. We aimed to investigate the impact of AR on CD-like colitis and determine the mechanism underlying its effects.


Endothelial Sash1 Is Required for Lung Maturation through Nitric Oxide Signaling.

  • Patrick Coulombe‎ et al.
  • Cell reports‎
  • 2019‎

The sterile alpha motif (SAM) and SRC homology 3 (SH3) domain containing protein 1 (Sash1) acts as a scaffold in TLR4 signaling. We generated Sash1-/- mice, which die in the perinatal period due to respiratory distress. Constitutive or endothelial-restricted Sash1 loss leads to a delay in maturation of alveolar epithelial cells causing reduced surfactant-associated protein synthesis. We show that Sash1 interacts with β-arrestin 1 downstream of the TLR4 pathway to activate Akt and endothelial nitric oxide synthase (eNOS) in microvascular endothelial cells. Generation of nitric oxide downstream of Sash1 in endothelial cells affects alveolar epithelial cells in a cGMP-dependent manner, inducing maturation of alveolar type 1 and 2 cells. Thus, we identify a critical cell nonautonomous function for Sash1 in embryonic development in which endothelial Sash1 regulates alveolar epithelial cell maturation and promotes pulmonary surfactant production through nitric oxide signaling. Lung immaturity is a major cause of respiratory distress and mortality in preterm infants, and these findings identify the endothelium as a potential target for therapy.


HopE and HopD Porin-Mediated Drug Influx Contributes to Intrinsic Antimicrobial Susceptibility and Inhibits Streptomycin Resistance Acquisition by Natural Transformation in Helicobacter pylori.

  • Yixin Liu‎ et al.
  • Microbiology spectrum‎
  • 2022‎

Helicobacter pylori is a human pathogen competent for natural transformation. Intrinsic and acquired antibiotic resistance contribute to the survival and multiplication of H. pylori under antibiotics. While drug-resistance dissemination by natural transformation (NT)-mediated horizontal gene transfer remains poorly understood in H. pylori. The purpose of the study was to investigate the role of H. pylori porins (HopA, HopB, HopC, HopD, and HopE) in the intrinsic antibiotic resistance and to preliminarily reveal the potential effect of HopE and HopD porins in streptomycin resistance acquisition after NT in the presence of antibiotics. Using traditional antibiotic susceptibility tests and growth curve analysis, we found the MIC values of metronidazole, clarithromycin, levofloxacin, tetracycline, rifampin, and streptomycin in mutants lacking HopE and/or HopD were significantly elevated compare to those in wild-type strain. The quantitative analysis of the tetramethyl rhodamine isothiocyanate (TRITC)-labeled streptomycin accumulation at the single-cell level showed reduced streptomycin intracellular fluorescence in ΔhopE and ΔhopD mutant cells. Furthermore, in the presence of translation-inhibiting antibiotic streptomycin, the resistance acquisition frequency was decreased in the wild-type strain, which could be reversed by mutants lacking HopE and HopD that restored relatively high resistance acquisition frequencies. By transforming a pUC19-rpsLmut-sfgfp linear plasmid carrying a streptomycin conferring mutation, we observed that the impaired ability of rpsLmut synthesis in the wild-type strain was restored in the ΔhopE and ΔhopD mutant transformants. Our study revealed that in the presence of streptomycin, resistance acquisition at least partially relied on the deletion of the hopE and hopD genes, because their loss reduced streptomycin concentration in the cell and thus restored the expression of the resistance-conferring gene, which was inhibited by streptomycin in wild-type strain. The loss of HopE and HopD influx activity may also preserve resistance acquisition by transformation in the presence of antibiotics with other modes of action. IMPORTANCE Helicobacter pylori is constitutively competent for natural transformation (NT) and possesses an efficient system for homologous recombination, which could be utilized to study the NT-mediated horizontal gene transfer induced antibiotic resistance acquisition. Bacterial porins have drawn renewed attention because of their crucial role in antibiotic susceptibility. From the perspective of porin-mediated influx in H. pylori, our study preliminarily revealed the important role of HopE and HopD porins not only in preserving the intrinsic susceptibility to specific antibiotic but also in evading acquired antibiotic resistance by NT in the presence of translation-inhibiting antimicrobial. Therefore, the loss of HopE or HopD porin in H. pylori genomes, combined with the large number of secreted or cell-free genetic elements carrying mutations conferring antibiotic resistance, may raise the possibility that this mechanism plays a potential role in the propagation of antibiotic resistance within H. pylori communities.


Epac-2 ameliorates spontaneous colitis in Il-10-/- mice by protecting the intestinal barrier and suppressing NF-κB/MAPK signalling.

  • Xue Song‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2022‎

Intestinal barrier dysfunction and intestinal inflammation interact in the progression of Crohn's disease (CD). A recent study indicated that Epac-2 protected the intestinal barrier and had anti-inflammatory effects. The present study examined the function of Epac-2 in CD-like colitis. Interleukin-10 gene knockout (Il-10-/- ) mice exhibit significant spontaneous enteritis and were used as the CD model. These mice were treated with Epac-2 agonists (Me-cAMP) or Epac-2 antagonists (HJC-0350) or were fed normally (control), and colitis and intestinal barrier structure and function were compared. A Caco-2 and RAW 264.7 cell co-culture system were used to analyse the effects of Epac-2 on the cross-talk between intestinal epithelial cells and inflammatory cells. Epac-2 activation significantly ameliorated colitis in mice, which was indicated by reductions in the colitis inflammation score, the expression of inflammatory factors and intestinal permeability. Epac-2 activation also decreased Caco-2 cell permeability in an LPS-induced cell co-culture system. Epac-2 activation significantly suppressed nuclear factor (NF)-κB/mitogen-activated protein kinase (MAPK) signalling in vivo and in vitro. Epac-2 may be a therapeutic target for CD based on its anti-inflammatory functions and protective effects on the intestinal barrier.


Ruscogenins Improve CD-Like Enteritis by Inhibiting Apoptosis of Intestinal Epithelial Cells and Activating Nrf2/NQO1 Pathway.

  • Hexin Wen‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2022‎

Interaction of intestinal barrier dysfunction and intestinal inflammation promotes the progression of Crohn's disease (CD). A more recent study has suggested that ruscogenins (RUS) can exert anti-inflammatory effects through activation of the Nrf2/NQO1 pathway. The current study is aimed at determining the functionalization of RUS on CD-like colitis. Wild-type (WT) mice induced with trinitrobenzene sulfonic acid (TNBS) exhibit a significant inflammation in their colon and are hence widely used for CD models. In the current study, the mice were treated with the Nrf-2 antagonist (ML385) or ruscogenin (RUS) whereas normal WT mice were kept as the negative control. Comparative analysis was then performed on the inflammation and barrier function of the colons. In vitro analysis of mouse colonic organoid systems revealed the influence of RUS on LPS-induced apoptosis, cytokine, and chemokine expressions in the intestinal epithelium. It was found that RUS ameliorates murine colitis through activation of the Nrf2/NQO1 pathway which was presented as a decrease in inflammation score and downregulated levels of cytokine and chemokine synthesis, as well as increased intestinal permeability. Further, it was noted that RUS alleviated LPS-induced apoptosis in the intestinal epithelium cells through upregulation of the Nrf2/NQO1 signaling pathway in the mouse colonic organoids. In addition, ruscogenin (RUS) attenuated the levels of Bax and C-caspase-3 through activation of the Nrf2/HO1 signaling pathway both in vivo and in vitro. Therefore, it was evident that RUS can be applied as a potential alternative therapeutic agent in CD based on its protective effects on the barrier function and anti-inflammatory activity.


A preliminary study of the chemical composition and bioactivity of Bombax ceiba L. flower and its potential mechanism in treating type 2 diabetes mellitus using ultra-performance liquid chromatography quadrupole-time-flight mass spectrometry and network pharmacology analysis.

  • Kehong Yin‎ et al.
  • Frontiers in nutrition‎
  • 2022‎

This study aimed to preliminary investigate the phytochemistry, bioactivity, hypoglycemic potential, and mechanism of action of Bombax ceiba L. flower (BCF), a wild edible and food plant in China. By using methanol extraction and liquid-liquid extraction, the crude extract (CE) of BCF and its petroleum ether (PE), dichloromethane (DCM), ethyl acetate (EtOAc), n-butanol (n-BuOH), and aqueous (AQ) fractions were obtained, and their chemical components and biological activities were evaluated. Further high-performance liquid chromatography (HPLC) analysis was carried out to identify and quantify the active constituents of BFC and its five fractions, and the phytochemical composition of the best-performing fraction was then analyzed by ultra-performance liquid chromatography quadrupole-time-flight mass spectrometry (UPLC/Q-TOF-MS). Finally, a network pharmacology strategy based on the chemical profile of this fraction was applied to speculate its main hypoglycemic mechanism. Results revealed the excellent biological activities of BCF, especially the EtOAc fraction. In addition to the highest total flavonoid content (TFC) (367.72 μg RE/mg E) and total phenolics content (TPC) (47.97 μg GAE/mg E), EtOAc showed the strongest DPPH⋅ scavenging ability (IC50 value = 29.56 μg/mL), ABTS⋅+ scavenging ability (IC50 value = 84.60 μg/mL), and ferric reducing antioxidant power (FRAP) (889.62 μg FeSO4/mg E), which were stronger than the positive control BHT. EtOAc also exhibited the second-best α-glucosidase inhibitory capacity and second-best acetylcholinesterase (AChE) inhibitory capacity with the IC50 values of 2.85 and 3.27 mg/mL, respectively. Also, EtOAc inhibited HepG2, MCF-7, Raw264.7, and A549 cell with IC50 values of 1.08, 1.62, 0.77, and 0.87 mg/mL, which were the second or third strongest in all fractions. Additionally, HPLC analysis revealed significant differences in the compounds' abundance between different fractions. Among them, EtOAc had the most detected compounds and the highest content. According to the results of UPLC/Q-TOF-MS, 38 compounds were identified in EtOAc, including 24 phenolic acids and 6 flavonoids. Network pharmacological analysis further confirmed 41 potential targets of EtOAc in the treatment of type 2 diabetes, and intracellular receptor signaling pathways, unsaturated fatty acid, and DNA transcription pathways were the most possible mechanisms. These findings suggested that BCF was worthwhile to be developed as an antioxidant and anti-diabetic food/drug.


Consecutive soybean (Glycine max) planting and covering improve acidified tea garden soil.

  • Shuilian Gao‎ et al.
  • PloS one‎
  • 2021‎

Planting soybeans (Glycine max (L.) Merr.) in tea gardens decreased soil pH in theory but increased it in practice. This controversy was addressed in this study by treating the tea garden soil consecutively with different parts of a soybean cover crop: aboveground soybean (ASB) parts, underground soybean (USB) root residues, and the whole soybean (WSB) plants. In comparison with the control, the soil pH increased significantly after the third ASB and WSB treatments, but there was no significant change in the soil pH in the USB treatment. Concordantly, the soil exchangeable acidity decreased significantly and the soil exchangeable bases increased significantly in the ASB and WSB treatments. The exchangeable acidity increased in the USB treatment, but the amount of the increased acidity was less than that of the increased bases in the ASB treatment, resulting in a net increase in the exchangeable bases in the WSB treatment. Soybean planting and covering also increased the microbial richness and abundance significantly, which led to significantly more soil organic matters. Exchangeable K+ and Mg2+, and soil organic matters played significantly positive roles and exchangeable Al3+ played negative roles in improving soil pH. Our data suggest that consecutive plantings of soybean cover crop increase the pH of the acidified tea garden soil.


Tanshinone IIA Reverses Oxaliplatin Resistance In Human Colorectal Cancer Via Inhibition Of ERK/Akt Signaling Pathway.

  • Yonggang Zhang‎ et al.
  • OncoTargets and therapy‎
  • 2019‎

Oxaliplatin (OXA)-based chemotherapy is generally used to treat human cancers, whereas OXA resistance is a main obstacle for the treatment of colorectal cancer (CRC). Evidence has shown that tanshinone IIA (Tan IIA) could induce apoptosis in CRC cells. However, the role of combination of OXA and Tan IIA on OXA-resistance CRC cells remains unknown. Thus, this study aimed to investigate the effects of Tan IIA in combination with OXA on OXA-resistance CRC cells.


Dynamic changes of serum protein in rats with acute intoxication of Chinese cobra snake venom by proteomic analysis.

  • Hui Yan‎ et al.
  • Forensic sciences research‎
  • 2017‎

To elucidate the toxic mechanism of snake venom at the protein level, proteomics technology was applied to investigate the effect of venom on circulation in the mammalian body. Temporal proteomic analysis was performed to profile the dynamic changes in the sera of Sprague-Dawley rats administered with Chinese cobra venom or saline. Using 8-plex iTRAQ analysis, 392 and 636 serum proteins were identified to be linearly upregulated or downregulated over time in the low-dose group and high-dose group, respectively. These proteins were mainly associated with the acute phase response pathway, complement system, and liver X receptor (LXR)/retinoid X receptor (RXR) and farnesoid X receptor (FXR)/RXR activation pathways. Compared with the low-dose group, the immune response and integrin pathways were inhibited in the high-dose group, although no obvious effect was observed. With consistently higher or lower expression in the high-dose group compared to the low-dose group throughout the whole process of venom poisoning, two proteins, Kininogen-1 (KNG1) and orosomucoid 1 (ORM1), which are involved in metabolism and immune response, occupied a core position in the pathway network and are considered venom dose-dependent biomarker candidates.


Detection of a New Tert-Leucinate Synthetic Cannabinoid 5F-MDMB-PICA and Its Metabolites in Human Hair: Application to Authentic Cases.

  • Yan Shi‎ et al.
  • Frontiers in chemistry‎
  • 2020‎

Methyl 2 -[ [ 1- (5- fluoropentyl) indole - 3- carbonyl] amino] -3, 3- dimethyl - butanoate (5F-MDMB-PICA) is a new synthetic cannabinoid characterized by valinate or tert-leucinate moieties. In recent years, 5F-MDMB-PICA has been abused in the form of "spice-like" herbal incenses or electronic cigarette oil. A UHPLC-MS/MS method was developed to detect 5F-MDMB-PICA and its metabolites in human hair. Approximately 20 mg of hair was weighed and pulverized with methanol below 4°C. After ultrasonication, centrifugation and filtration, 200 μL of supernatant was placed into an autosampler vial and analyzed on a Waters Acquity UPLC HSS T3 column (100 mm × 2.1 mm, 1.8 μm particle size) using an acetonitrile-20 mmol/L ammonium acetate (0.1% formic acid, 5% acetonitrile) gradient with a run time of 8 min. The limit of detection (LOD) ranged from 0.5 to 5 pg/mg, and the lower limit of quantitation (LLOQ) ranged from 1 to 5 pg/mg. The method was shown to be linear over a concentration range of 1-200 pg/mg. The linear correlation (R 2) of the calibration curves for all analytes was >0.999. The accuracy varied from 95.4 to 107.4%, while the intra- and inter-day precision RSD values were 0.7-10.6% and 1.7-12.2%, respectively. Recoveries were within the range of 61.1-93.3%, and matrix effects were in the range of 19.1-102.6%. The validated method was successfully applied to the identification and quantification of 5F-MDMB-PICA and its metabolites in hair from authentic forensic cases.


Prognostic value of the miR-200 family in bladder cancer: A systematic review and meta-analysis.

  • Yanhui Mei‎ et al.
  • Medicine‎
  • 2020‎

We aimed to evaluate the prognostic significance of high expression of the miR-200 family of microRNAs in bladder cancer.


Effects of soil-extractable metals Cd and Ni from an e-waste dismantling site on human colonic epithelial cells Caco-2: Mechanisms and implications.

  • Jiao-Yang Ma‎ et al.
  • Chemosphere‎
  • 2022‎

E-wastes release toxic metals including Cd, Cu, Ni, Pb and Zn into nearby soils during dismantling process. However, their adverse effects and the associated mechanisms on human intestinal epithelium are poorly understood. In this study, their toxic effects on human colonic epithelial cells Caco-2 and the underlying mechanisms were assessed basing on three soils from Wenling e-waste dismantling site. Since soil-extractable metals are more available for gastrointestinal absorption, we used phosphate buffer saline solution to extract metals at solid to liquid ratio of 1:2. Among metals, total Cd and Ni exceeded the risk screening values in three soils, being 3.8-8.8 and 42.4-155 mg/kg. Furthermore, high extractable-metals at 5.9, 1.9, and 0.87 mg/kg Cd (20-67%) and 4.6, 6.4, and 12.4 mg/kg Ni (3.6-29%) were observed for Soil-1, -2 and -3, respectively. All three extracts triggered cytotoxicity, with Soil-2 showing the strongest inhibition of cell viability. Higher production of reactive oxygen species and stronger inhibition of antioxidant enzymes SOD1 and CAT were observed in Soil-2 and -3. Upregulation of proinflammatory mediators (IL-1β, IL-8 and TNF-α) and apoptosis-regulatory genes (GADD45α, Caspase-3, and Caspase-8) were observed. Our data suggest that soil extracts induced cytotoxicity, oxidative damage, inflammatory response, and cell apoptosis in Caco-2 cells, indicating soil ingestion from e-waste dismantling site may adversely impact human health.


Gut microbiota changes in animal models of spinal cord injury: a preclinical systematic review and meta-analysis.

  • Zhenye Zhang‎ et al.
  • Annals of medicine‎
  • 2023‎

An increasing number of studies show that the intestinal flora is closely related to spinal cord injury. Many researchers are exploring the changes in the richness, diversity, and evenness of intestinal flora in spinal cord injury animal models to identify the characteristic bacteria.


Simultaneous Determination of Selegiline, Desmethylselegiline, R/S-methamphetamine, and R/S-amphetamine on Dried Urine Spots by LC/MS/MS: Application to a Pharmacokinetic Study in Urine.

  • Lizhu Chen‎ et al.
  • Frontiers in chemistry‎
  • 2019‎

Objective: Chiral analysis is a crucial method to differentiate selegiline intake from drug abuse. A dried urine spot (DUS) analytical method based on spotting urine samples (10 μL) onto dried spot collection cards, and followed by air-drying and extraction, was developed and validated for the determination of selegiline, desmethylselegiline, R/S-methamphetamine, and R/S-amphetamine. Methods: Methanol (0.5 mL) was found to be the ideal extraction solvent for target extraction from DUSs under orbital-horizontal stirring on a lateral shaker at 1,450 rpm for 30 min. Determinations were performed by direct electrospray ionization tandem mass spectrometry (ESI-MS/MS) under positive electrospray ionization conditions using multiple reaction monitoring mode. The chromatographic system consisted of a ChirobioticTM V2 column (2.1 × 250 mm, 5 μm) and a mobile phase of methanol containing 0.1% (v/v) glacial acetic acid and 0.02% (v/v) ammonium hydroxide. Results and conclusions: The calibration curves were linear from 50 to 5,000 ng/mL, with r > 0.995 for all analytes, imprecisions ≤ 15% and accuracies between -11.4 and 11.7%. Extraction recoveries ranged from 48.6 to 105.4% with coefficients of variation (CV) ≤ 13.7%, and matrix effects ranged from 45.4 to 104.1% with CV ≤ 10.3%. The lower limit of quantification was 50 ng/mL for each analyte. The present method is simple, rapid (accomplished in 12 min), sensitive, and validated by a pharmacokinetic study in human urine collected after a single oral administration of SG.


Oral Gavage of Ginger Nanoparticle-Derived Lipid Vectors Carrying Dmt1 siRNA Blunts Iron Loading in Murine Hereditary Hemochromatosis.

  • Xiaoyu Wang‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2019‎

Nanoparticles (NPs) have been utilized to deliver drugs to the intestinal epithelium in vivo. Moreover, NPs derived from edible plants are less toxic than synthetic NPs. Here, we utilized ginger NP-derived lipid vectors (GDLVs) in a proof-of-concept investigation to test the hypothesis that inhibiting expression of divalent metal-ion transporter 1 (Dmt1) would attenuate iron loading in a mouse model of hereditary hemochromatosis (HH). Initial experiments using duodenal epithelial organ cultures from intestine-specific Dmt1 knockout (KO) (Dmt1int/int) mice in the Ussing chamber established that Dmt1 is the only active iron importer during iron-deficiency anemia. Further, when Dmt1int/int mice were crossed with mice lacking the iron-regulatory hormone, hepcidin (Hepc-/-), iron loading was abolished. Hence, intestinal Dmt1 is required for the excessive iron absorption that typifies HH. Additional experiments established a protocol to produce GDLVs carrying functional Dmt1 small interfering RNAs (siRNAs) and to target these gene delivery vehicles to the duodenal epithelium in vivo (by incorporating folic acid [FA]). When FA-GDLVs carrying Dmt1 siRNA were administered to weanling Hepc-/- mice for 16 days, intestinal Dmt1 mRNA expression was attenuated and tissue iron accumulation was blunted. Oral delivery of functional siRNAs by FA-GDLVs is a suitable therapeutic approach to mitigate iron loading in murine HH.


The activation of NG2 expressing cells is downstream to microglial reaction and mediated by the transforming growth factor beta 1.

  • Ping Xiang‎ et al.
  • Journal of neuroimmunology‎
  • 2015‎

In the present study, we investigated the mechanism of activation of NG2 expressing cells. Application of microglial inhibitors not only attenuated morphological changes but also significantly retarded increase in the number of NG2 expressing cells. Intracerebral injection of TGF-β1 led to a profound activation of NG2 glia as well as an earlier accumulation of NG2(+)-microglia, whilst inhibition of TGF-β1 Smad2/3 signalling pathway eventually attenuated their active responses. We conclude that the activation of NG2 expressing cells is an event downstream to microglial reaction and TGF-β1 secreted from microglia might play an important role in modulation of the function of NG2 expressing cells.


Effects of Physical Activity on Motor Skills and Cognitive Development in Early Childhood: A Systematic Review.

  • Nan Zeng‎ et al.
  • BioMed research international‎
  • 2017‎

This study synthesized literature concerning casual evidence of effects of various physical activity programs on motor skills and cognitive development in typically developed preschool children.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: