Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,267 papers

CD40 ligation releases immature dendritic cells from the control of regulatory CD4+CD25+ T cells.

  • Pau Serra‎ et al.
  • Immunity‎
  • 2003‎

We report that disruption of CD154 in nonobese diabetic (NOD) mice abrogates the helper function of CD4+CD25- T cells without impairing the regulatory activity of CD4+CD25+ T cells. Whereas CD4+ T cells from NOD mice enhanced a diabetogenic CD8+ T cell response in monoclonal TCR-transgenic NOD mice, CD4+ T cells from NOD.CD154(-/-) mice actively suppressed it. Suppression was mediated by regulatory CD4+CD25+ T cells capable of inhibiting CD8+ T cell responses induced by peptide-pulsed dendritic cells (DCs), but not peptide/MHC monomers. It involved inhibition of DC maturation, did not occur in the presence of CD154+ T-helper cells, and could be inhibited by activation of DCs with LPS, CpG DNA, or an agonistic anti-CD40 mAb. Thus, in at least some genetic backgrounds, CD154-CD40 interactions and innate stimuli release immature DCs from suppression by CD4+CD25+ T cells.


Interruption of β-catenin suppresses the EGFR pathway by blocking multiple oncogenic targets in human glioma cells.

  • Xiao Yue‎ et al.
  • Brain research‎
  • 2010‎

Malignant gliomas are the most common type of intrinsic central nervous system (CNS) tumors with high mortality and morbidity. β-catenin is overexpressed in human glioblastoma and knockdown of β-catenin inhibits glioblastoma cell proliferation and invasive ability, and induces apoptotic cell death. Furthermore, treating the nude mice carrying established subcutaneous LN229 gliomas with siRNA targeting β-catenin intratumorally also delayed the tumor growth. However, the mechanisms of down-regulation of β-catenin that represses glioblastoma malignancy behavior remain to be elucidated. We utilized text-mining of MEDLINE abstracts with natural language processing to establish the β-catenin biologic association network, and identified several interactions of this network with the EGFR pathway. In both in vitro and in vivo studies, our results confirmed down-regulation of β-catenin induced reduced expression of EGFR, STAT3 and AKT1 mRNA and protein, besides, the level of phosphorylated Akt also decreased. A similar reduction in expression of CyclinD1, MMP2 and MMP9, downstream genes of the EGFR pathway, was observed. These results suggest that the Wnt/β-catenin pathway regulates glioma cell proliferation and invasion, in part via the EGFR pathway.


Epidermal growth factor induces HCCR expression via PI3K/Akt/mTOR signaling in PANC-1 pancreatic cancer cells.

  • Zekuan Xu‎ et al.
  • BMC cancer‎
  • 2010‎

Human cervical cancer oncoprotein 1 (HCCR-1), reported as a negative regulator of p53, is over-expressed in a variety of human cancers. However, it is yet unknown whether HCCR-1 plays any role in pancreatic cancer development. The aim of this study was to investigate the effect of epidermal growth factor on the expression of HCCR in pancreatic cancer cells, and to explore if PI3K/Akt/mTOR signaling pathway mediated this expression.


Inland post-glacial dispersal in East Asia revealed by mitochondrial haplogroup M9a'b.

  • Min-Sheng Peng‎ et al.
  • BMC biology‎
  • 2011‎

Archaeological studies have revealed a series of cultural changes around the Last Glacial Maximum in East Asia; whether these changes left any signatures in the gene pool of East Asians remains poorly indicated. To achieve deeper insights into the demographic history of modern humans in East Asia around the Last Glacial Maximum, we extensively analyzed mitochondrial DNA haplogroup M9a'b, a specific haplogroup that was suggested to have some potential for tracing the migration around the Last Glacial Maximum in East Eurasia.


A missense mutation in SLC33A1, which encodes the acetyl-CoA transporter, causes autosomal-dominant spastic paraplegia (SPG42).

  • Pengfei Lin‎ et al.
  • American journal of human genetics‎
  • 2008‎

Hereditary spastic paraplegias (HSPs), characterized by progressive and bilateral spasticity of the legs, are usually caused by developmental failure or degeneration of motor axons in the corticospinal tract. There are considerable interfamilial and intrafamilial variations in age at onset and severity of spasticity. Genetic studies also showed that there are dozens of genetic loci, on multiple chromosomes, that are responsible for HSPs. Through linkage study of a pedigree of HSP with autosomal-dominant inheritance, we mapped the causative gene to 3q24-q26. Screening of candidate genes revealed that the HSP is caused by a missense mutation in the gene for acetyl-CoA transporter (SLC33A1). It is predicted that the missense mutation, causing the change of the highly conserved serine to arginine at the codon 113 (p. S113R), disrupts the second transmembrane domain in the transporter and reverses the orientation of all of the descending domains. Knockdown of Slc33a1 in zebrafish caused a curve-shaped tail and defective axon outgrowth from the spinal cord. Although the wild-type human SLC33A1 was able to rescue the phenotype caused by Slc33a1 knockdown in zebrafish, the mutant SLC33A1 (p.S113R) was not, suggesting that S113R mutation renders SLC33A1 nonfunctional and one that wild-type allele is not sufficient for sustaining the outgrowth and maintenance of long motor axons in human heterozygotes. Thus, our study illustrated a critical role of acetyl-CoA transporter in motor-neuron development and function.


USP22 acts as an oncogene by regulating the stability of cyclooxygenase-2 in non-small cell lung cancer.

  • Haibo Xiao‎ et al.
  • Biochemical and biophysical research communications‎
  • 2015‎

The histone ubiquitin hydrolase ubiquitin-specific protease 22 (USP22) is an epigenetic modifier and an oncogene that is upregulated in many types of cancer. In non-small cell lung cancer (NSCLC), aberrant expression of USP22 is a predictor of poor survival, as is high expression of cyclooxygenase-2 (COX-2). Despite its oncogenic role, few substrates of USP22 have been identified and its mechanism of action in cancer remains unclear. Here, we identified COX-2 as a direct substrate of USP22 and showed that its levels are modulated by USP22 mediated deubiquitination. Silencing of USP22 downregulated COX-2, decreased its half-life, and inhibited lung carcinoma cell proliferation by directly interacting with and modulating the stability and activity of COX-2 through the regulation of its ubiquitination status. The findings of the present study suggest a potential mechanism underlying the oncogenic role of USP22 mediated by the modulation of the stability and activity of COX-2.


Calretinin-positive L5a pyramidal neurons in the development of the paralemniscal pathway in the barrel cortex.

  • Junhua Liu‎ et al.
  • Molecular brain‎
  • 2014‎

The rodent barrel cortex has been established as an ideal model for studying the development and plasticity of a neuronal circuit. The barrel cortex consists of barrel and septa columns, which receive various input signals through distinct pathways. The lemniscal pathway transmits whisker-specific signals to homologous barrel columns, and the paralemniscal pathway transmits multi-whisker signals to both barrel and septa columns. The integration of information from both lemniscal and paralemniscal pathways in the barrel cortex is critical for precise object recognition. As the main target of the posterior medial nucleus (POm) in the paralemniscal pathway, layer 5a (L5a) pyramidal neurons are involved in both barrel and septa circuits and are considered an important site of information integration. However, information on L5a neurons is very limited. This study aims to explore the cellular features of L5a neurons and to provide a morphological basis for studying their roles in the development of the paralemniscal pathway and in information integration.


A Unique Human Norovirus Lineage with a Distinct HBGA Binding Interface.

  • Wu Liu‎ et al.
  • PLoS pathogens‎
  • 2015‎

Norovirus (NoV) causes epidemic acute gastroenteritis in humans, whereby histo-blood group antigens (HBGAs) play an important role in host susceptibility. Each of the two major genogroups (GI and GII) of human NoVs recognizes a unique set of HBGAs through a distinct binding interface that is conserved within a genogroup, indicating a distinct evolutionary path for each genogroup. Here, we characterize a Lewis a (Lea) antigen binding strain (OIF virus) in the GII.21 genotype that does not share the conserved GII binding interface, revealing a new evolution lineage with a distinct HBGA binding interface. Sequence alignment showed that the major residues contributing to the new HBGA binding interface are conserved among most members of the GII.21, as well as a closely related GII.13 genotype. In addition, we found that glycerol inhibits OIF binding to HBGAs, potentially allowing production of cheap antivirals against human NoVs. Taken together, our results reveal a new evolutionary lineage of NoVs selected by HBGAs, a finding that is important for understanding the diversity and widespread nature of NoVs.


Enhancement of Radiation Effects by Ursolic Acid in BGC-823 Human Adenocarcinoma Gastric Cancer Cell Line.

  • Yang Yang‎ et al.
  • PloS one‎
  • 2015‎

Recent research has suggested that certain plant-derived polyphenols, i.e., ursolic acid (UA), which are reported to have antitumor activities, might be used to sensitize tumor cells to radiation therapy by inhibiting pathways leading to radiation therapy resistance. This experiment was designed to investigate the effects and possible mechanism of radiosensitization by UA in BGC-823 cell line from human adenocarcinoma gastric cancer in vitro. UA caused cytotoxicity in a dose-dependent manner, and we used a sub-cytotoxicity concentration of UA to test radioenhancement efficacy with UA in gastric cancer. Radiosensitivity was determined by clonogenic survival assay. Surviving fraction of the combined group with irradiation and sub-cytotoxicity UA significantly decreased compared with the irradiation group. The improved radiosensitization efficacy was associated with enhanced G2/M arrest, increased reactive oxygen species (ROS), down-regulated Ki-67 level and improved apoptosis. In conclusion, as UA demonstrated potent antiproliferation effect and synergistic effect, it could be used as a potential drug sensitizer for the application of radiotherapy.


Characterization of WRKY transcription factors in Solanum lycopersicum reveals collinearity and their expression patterns under cold treatment.

  • Lin Chen‎ et al.
  • Biochemical and biophysical research communications‎
  • 2015‎

WRKY transcription factors play an important role in cold defense of plants. However, little information is available about the cold-responsive WRKYs in tomato (Solanum lycopersicum). In the present study, a complete characterization of this gene family was described. Eighty WRKY genes in the tomato genome were identified. Almost all WRKY genes contain putative stress-responsive cis-elements in their promoter regions. Segmental duplications contributed significantly to the expansion of the SlWRKY gene family. Transcriptional analysis revealed notable differential expression in tomato tissues and expression patterns under cold stress, which indicated wide functional divergence in this family. Ten WRKYs in tomato were strongly induced more than 2-fold during cold stress. These genes represented candidate genes for future functional analysis of WRKYs involved in the cold-related signal pathways. Our data provide valuable information about tomato WRKY proteins and form a foundation for future studies of these proteins, especially for those that play an important role in response to cold stress.


Sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation will increase in lipopolysaccharide-induced inflammation in vitro model.

  • Wen-Qi Zuo‎ et al.
  • Journal of neuroinflammation‎
  • 2015‎

With the increasing popularity of mobile phones, the potential hazards of radiofrequency electromagnetic radiation (RF-EMR) on the auditory system remain unclear. Apart from RF-EMR, humans are also exposed to various physical and chemical factors. We established a lipopolysaccharide (LPS)-induced inflammation in vitro model to investigate whether the possible sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation (at specific absorption rates: 2, 4 W/kg) will increase.


The neuroleptic drug pimozide inhibits stem-like cell maintenance and tumorigenicity in hepatocellular carcinoma.

  • Jia-Jie Chen‎ et al.
  • Oncotarget‎
  • 2017‎

Drug repurposing is currently an important approach for accelerating drug discovery and development for clinical use. Hepatocellular carcinoma (HCC) presents drug resistance to chemotherapy, and the prognosis is poor due to the existence of liver cancer stem-like cells. In this study, we investigated the effect of the neuroleptic agent pimozide to inhibit stem-like cell maintenance and tumorigenicity in HCC. Our results showed that pimozide functioned as an anti-cancer drug in HCC cells or stem-like cells. Pimozide inhibited cell proliferation and sphere formation capacities in HCC cells by inducing G0/G1 phase cell cycle arrest, as well as inhibited HCC cell migration. Surprisingly, pimozide inhibited the maintenance and tumorigenicity of HCC stem-like cells, particularly the side population (SP) or CD133-positive cells, as evaluated by colony formation, sphere formation and transwell migration assays. Furthermore, pimozide was found to suppress STAT3 activity in HCC cells by attenuating STAT3-dependent luciferase activity and down-regulating the transcription levels of downstream genes of STAT3 signaling. Moreover, pimozide reversed the stem-like cell tumorigenic phenotypes induced by IL-6 treatment in HCC cells. Further, the antitumor effect of pimozide was also proved in the nude mice HCC xenograft model. In short, the anti-psychotic agent pimozide may act as a novel potential anti-tumor agent in treating advanced HCC.


Household Transmission of Vibrio cholerae in Bangladesh.

  • Jonathan D Sugimoto‎ et al.
  • PLoS neglected tropical diseases‎
  • 2014‎

Vibrio cholerae infections cluster in households. This study's objective was to quantify the relative contribution of direct, within-household exposure (for example, via contamination of household food, water, or surfaces) to endemic cholera transmission. Quantifying the relative contribution of direct exposure is important for planning effective prevention and control measures.


Autophagy upregulation and apoptosis downregulation in DAHP and triptolide treated cerebral ischemia.

  • Yang Yang‎ et al.
  • Mediators of inflammation‎
  • 2015‎

It has previously been demonstrated that ischemic stroke activates autophagy pathways; however, the mechanism remains unclear. The aim of this study is to further investigate the role that autophagy plays in cerebral ischemia. 2, 4-diamino-6-hydroxy-pyrimidine (DAHP), for its nitric oxide synthase (NOS) inhibiting neuroprotective effect, and triptolide (TP), for its anti-inflammatory property, were selected to administer pre middle cerebral artery occlusion (MCAO). The drugs were administered 12 hours prior to MCAO. Both magnetic resonance imaging (MRI) and 2, 3, 5-triphenyltetrazolium chloride (TTC) staining showed that the drugs reduce the area of infarction. Immunoblotting analysis revealed increases in Beclin-1 and myeloid cell leukelia-1(Mcl-1) in treated rats. This could be a contributing factor to the reduction in autophagy induced damage. Immunochemistry and western blot showed that mTOR expression in treated rats was marginally different 24 h after injury, and this could also be significant in the mechanism. Furthermore, terminal deoxynucleotidyl transferase- (TdT-) mediated dUTP nick end labeling (TUNEL) staining proved that the drugs are effective in reducing apoptosis. The upregulation of Beclin-1 and Mcl-1 and downregulation of Bcl-2, caspase-3, and the Bcl-2/Beclin-1 ratio infer that the neuroprotective effect of DAHP and TP act via the mediation of autophagy and apoptosis pathways.


Unique roles of infiltrating myeloid cells in the murine uterus during early to midpregnancy.

  • Hui Zhao‎ et al.
  • Journal of immunology (Baltimore, Md. : 1950)‎
  • 2015‎

Leukocyte infiltration into the uterus is a characteristic feature in early to midpregnancy, but the composition and function of these leukocytes are not well understood. Using a pregnant murine model, we showed that myeloid cells and uterine NK (uNK) cells were the predominant populations in uteri during early to midgestation, whereas T and B cells were constrained. Uterine myeloid populations included cells that infiltrated from the circulation (myeloid-derived suppressor cells [MDSCs], monocyte-derived macrophages [Mφs], and dendritic cells [DCs]) or proliferated from resident precursors (resident Mφs [Re-Mφs] and DCs). CD11b(hi)Ly6-G(hi) cells, representing neutrophils in both blood and uterine MDSCs, significantly increased from embryonic days 8.5 to 9.5. To understand their putative functions, we used anti-Gr-1 Ab to deplete circulating neutrophils and uterine MDSCs. In the absence of MDSC suppression, uterine DCs, T cells, and regulatory T cells expanded. Conversely, uterine MDSCs responded to LPS-induced inflammation and transformed into CD14(+)-activated neutrophils, resulting in an upregulation of tolerogenic DCs. A high dose of LPS (2.5 μg/mouse) significantly increased the influx of neutrophils and production of proinflammatory cytokines, such as IL-1β and TNF-α, resulting in the reduction of Re-Mφs and uNK cells, and led to placental hemorrhages and fetal deaths. In summary, uterine MDSCs are important in early to midpregnancy by responding to the maternal immunologic milieu and protecting uNK cells and Re-Mφs via MDSC's suppressive and anti-inflammatory functions. Upsetting this delicate immune balance by factors leading to either insufficient MDSCs or excessive neutrophil infiltration in the fetomaternal interface may contribute to pregnancy failure.


Activation of autophagy protects against cholestasis-induced hepatic injury.

  • Lu Gao‎ et al.
  • Cell & bioscience‎
  • 2014‎

Cholestasis is characterized by an abnormal accumulation of bile acids and causes hepatocellular injury. Recent studies show that autophagy is involved in the pathophysiology of many liver diseases. The potential role of autophagy in preventing cholestatic hepatotoxicity, however, has rarely been investigated. The aim of this study was to examine whether autophagy is involved in the cholestatic hepatotoxicity.


siRNA suppression of hTERT using activatable cell-penetrating peptides in hepatoma cells.

  • Hua Li‎ et al.
  • Bioscience reports‎
  • 2015‎

Activatable cell-penetrating peptides (aCPPs) allow non-viral, low cytotoxic and selective delivery of compounds into target cells for cancer therapy. In tumour cells, up-regulation of human telomerase reverse transcriptase (hTERT) frequently occurs and is being considered as a target in cancer diagnosis and treatment. siRNA sequence that target hTERT mRNA can silence the gene and reduce hTERT protein expression to reduce cell proliferation and inhibit cell growth. In our study, we tested a matrix metalloproteinase-2 (MPP2) aCPP in delivering hTERT siRNA into hepatocellular carcinoma cells (SMMC-7721) to silence the hTERT gene. Cultured SMMC-7721 cells were transfected with a complex of aCPPs and hTERT-specific siRNA-encoding or control plasmids. Compared with cells treated with the complex of control plasmid-CPPs, cells treated with the hTERT-specific siRNA-encoding plasmid-CPP complex had a prolonged G1-phase, but a shorter G2/S-phase, indicating a G1-arrest. Treatment with the hTERT-specific siRNA resulted in a significant decrease (by 26%; P<0.05) in hTERT mRNA levels. The aCPPs tested in this study provides a non-viral delivery of siRNA into cancer cells to silence target genes in cancer therapy.


Folate-linked lipoplexes for short hairpin RNA targeting claudin-3 delivery in ovarian cancer xenografts.

  • Zhi-Yao He‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2013‎

Ovarian cancers highly overexpress folate receptor α (FRα) and claudin3 (CLDN3), both of which are associated with tumor progression and poor prognosis of patients. Downregulation of FRα and CLDN3 in ovarian cancer may suppress tumor growth and promote benign differentiation of tumor. In this study, F-P-LP/CLDN3, a FRα targeted liposome loading with short hairpin RNA (shRNA) targeting CLDN3 was prepared and the pharmaceutical properties were characterized. Then, the antitumor effect of F-P-LP/CLDN3 was studied in an in vivo model of advanced ovarian cancer. Compared with Control, F-P-LP/CLDN3 promoted benign differentiation of tumor and achieved about 90% tumor growth inhibition. In the meantime, malignant ascites production was completely inhibited, and tumor nodule number and tumor weight were significantly reduced (p<0.001). FRα and CLDN3 were downregulated together in tumor tissues treated by F-P-LP/CLDN3. The antitumor mechanisms were achieved by promoting tumor cell apoptosis, inhibiting tumor cell proliferation and reducing microvessel density. Finally, safety evaluation indicated that F-P-LP/CLDN3 was a safe formulation in intraperitoneally administered cancer therapy. We come to a conclusion that F-P-LP/CLDN3 is a potential targeting formulation for ovarian cancer gene therapy.


Pterostilbene exerts antitumor activity via the Notch1 signaling pathway in human lung adenocarcinoma cells.

  • Yang Yang‎ et al.
  • PloS one‎
  • 2013‎

Although pterostilbene (PTE) has been shown to have potent antitumor activities against various cancer types, the molecular mechanisms of these activities remain unclear. In this study, we investigated the antitumor activity of PTE against human lung adenocarcinoma in vitro and in vivo and explored the role of the Notch1 signaling pathway in this process. PTE treatment resulted in a dose- and time-dependent decrease in the viability of A549 cells. Additionally, PTE exhibited strong antitumor activity, as evidenced not only by a reduced mitochondrial membrane potential (MMP) and a decreased intracellular glutathione content but also by increases in the apoptotic index and the level of reactive oxygen species (ROS). Furthermore, PTE treatment induced the activation of the Notch1 Intracellular Domain (NICD) protein and activated Hes1. DAPT (a gamma secretase inhibitor) and Notch1 siRNA prevented the induction of NICD and Hes1 activation by PTE treatment and sensitized the cells to PTE treatment. The down-regulation of Notch signaling also prevented the activation of pro-survival pathways (most notably the PI3K/Akt pathway) after PTE treatment. In summary, lung adenocarcinoma cells may enhance Notch1 activation as a protective mechanism in response to PTE treatment. Combining a gamma secretase inhibitor with PTE treatment may represent a novel approach for treating lung adenocarcinoma by inhibiting the survival pathways of cancer cells.


Contribution of a non-β-cell source to β-cell mass during pregnancy.

  • Chiara Toselli‎ et al.
  • PloS one‎
  • 2014‎

β-cell mass in the pancreas increases significantly during pregnancy as an adaptation to maternal insulin resistance. Lineage tracing studies in rodents have presented conflicting evidence on the role of cell duplication in the formation of new β-cells during gestation, while recent human data suggest that new islets are a major contributor to increased β-cell mass in pregnancy. Here, we aim to: 1) determine whether a non-β-cell source contributes to the appearance of new β-cells during pregnancy and 2) investigate whether recapitulation of the embryonic developmental pathway involving high expression of neurogenin 3 (Ngn3) plays a role in the up-regulation of β-cell mass during pregnancy. Using a mouse β-cell lineage-tracing model, which labels insulin-producing β-cells with red fluorescent protein (RFP), we found that the percentage of labeled β-cells dropped from 97% prior to pregnancy to 87% at mid-pregnancy. This suggests contribution of a non-β-cell source to the increase in total β-cell numbers during pregnancy. In addition, we observed a population of hormone-negative, Ngn3-positive cells in islets of both non-pregnant and pregnant mice, and this population dropped from 12% of all islets cells in the non-pregnant mice to 5% by day 8 of pregnancy. Concomitantly, a decrease in expression of Ngn3 and changes in its upstream regulatory network (Sox9 and Hes-1) as well as downstream targets (NeuroD, Nkx2.2, Rfx6 and IA1) were also observed during pregnancy. Our results show that duplication of pre-existing β-cells is not the sole source of new β-cells during pregnancy and that Ngn3 may be involved in this process.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: