Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A Unique Human Norovirus Lineage with a Distinct HBGA Binding Interface.

PLoS pathogens | 2015

Norovirus (NoV) causes epidemic acute gastroenteritis in humans, whereby histo-blood group antigens (HBGAs) play an important role in host susceptibility. Each of the two major genogroups (GI and GII) of human NoVs recognizes a unique set of HBGAs through a distinct binding interface that is conserved within a genogroup, indicating a distinct evolutionary path for each genogroup. Here, we characterize a Lewis a (Lea) antigen binding strain (OIF virus) in the GII.21 genotype that does not share the conserved GII binding interface, revealing a new evolution lineage with a distinct HBGA binding interface. Sequence alignment showed that the major residues contributing to the new HBGA binding interface are conserved among most members of the GII.21, as well as a closely related GII.13 genotype. In addition, we found that glycerol inhibits OIF binding to HBGAs, potentially allowing production of cheap antivirals against human NoVs. Taken together, our results reveal a new evolutionary lineage of NoVs selected by HBGAs, a finding that is important for understanding the diversity and widespread nature of NoVs.

Pubmed ID: 26147716 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIAID NIH HHS, United States
    Id: R01 AI089634
  • Agency: NIAID NIH HHS, United States
    Id: R01 AI111095
  • Agency: NIAID NIH HHS, United States
    Id: R01 AI123661
  • Agency: NIAID NIH HHS, United States
    Id: R01AI089634

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Coot (tool)

RRID:SCR_014222

Software for macromolecular model building, model completion and validation, and protein modelling using X-ray data. Coot displays maps and models and allows model manipulations such as idealization, rigid-body fitting, ligand search, Ramachandran plots, non-crystallographic symmetry and more. Source code is available.

View all literature mentions

Phenix (tool)

RRID:SCR_014224

A Python-based software suite for the automated determination of molecular structures using X-ray crystallography and other methods. Phenix includes programs for assessing data quality, experimental phasing, molecular replacement, model building, structure refinement, and validation. It also includes tools for reflection data and creating maps and models. Phenix can also be used for neutron crystallography. Tutorials and examples are available in the documentation tab.

View all literature mentions