Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Characterizing TP53 mutations in ovarian carcinomas with and without concurrent BRCA1 or BRCA2 mutations.

  • Talayeh S Ghezelayagh‎ et al.
  • Gynecologic oncology‎
  • 2021‎

Mutations in the TP53 tumor suppressor gene are common in ovarian carcinoma (OC) but their impact on outcomes is controversial. We sought to define the relationship of TP53 mutations to cancer outcomes and their interactions with co-occurrent BRCA1 or BRCA2 (BRCA) mutations, comparing three different TP53 mutation classification schemes.


Inherited mutations in fallopian tube, ovarian and primary peritoneal carcinoma: Changes in diagnoses and mutational frequency over 20 years.

  • Arielle S Weiss‎ et al.
  • Gynecologic oncology‎
  • 2020‎

Women with fallopian tube carcinoma (FTC) are reported to have a higher frequency of inherited BRCA mutations than those with ovarian carcinoma (OC) or primary peritoneal carcinoma (PPC). We hypothesized that routine serial sectioning of fallopian tubes would increase the proportion of cases designated as FTC and change the frequency of inherited mutations between carcinoma types.


KiRNet: Kinase-centered network propagation of pharmacological screen results.

  • Thomas Bello‎ et al.
  • Cell reports methods‎
  • 2021‎

The ever-increasing size and scale of biological information have popularized network-based approaches as a means to interpret these data. We develop a network propagation method that integrates kinase-inhibitor-focused functional screens with known protein-protein interactions (PPIs). This method, dubbed KiRNet, uses an a priori edge-weighting strategy based on node degree to establish a pipeline from a kinase inhibitor screen to the generation of a predictive PPI subnetwork. We apply KiRNet to uncover molecular regulators of mesenchymal cancer cells driven by overexpression of Frizzled 2 (FZD2). KiRNet produces a network model consisting of 166 high-value proteins. These proteins exhibit FZD2-dependent differential phosphorylation, and genetic knockdown studies validate their role in maintaining a mesenchymal cell state. Finally, analysis of clinical data shows that mesenchymal tumors exhibit significantly higher average expression of the 166 corresponding genes than epithelial tumors for nine different cancer types.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: