Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 76 papers

Class II phosphoinositide 3-kinase C2β regulates a novel signaling pathway involved in breast cancer progression.

  • Anissa Chikh‎ et al.
  • Oncotarget‎
  • 2016‎

It is now well established that the enzymes phosphoinositide 3-kinases (PI3Ks) have a key role in the development and progression of many cancer types and indeed PI3Ks inhibitors are currently being tested in clinical trials. Although eight distinct PI3K isoforms exist, grouped into three classes, most of the evidence currently available are focused on one specific isoform with very little known about the potential role of the other members of this family in cancer. Here we demonstrate that the class II enzyme PI3K-C2β is overexpressed in several human breast cancer cell lines and in human breast cancer specimens. Our data indicate that PI3K-C2β regulates breast cancer cell growth in vitro and in vivo and that PI3K-C2β expression in breast tissues is correlated with the proliferative status of the tumor. Specifically we show that downregulation of PI3K-C2β in breast cancer cell lines reduces colony formation, induces cell cycle arrest and inhibits tumor growth, in particular in an estrogen-dependent in vivo xenograft. Investigation of the mechanism of the PI3K-C2β-dependent regulation of cell cycle progression and cell growth revealed that PI3K-C2β regulates cyclin B1 protein levels through modulation of microRNA miR-449a levels. Our data further demonstrate that downregulation of PI3K-C2β inhibits breast cancer cell invasion in vitro and breast cancer metastasis in vivo. Consistent with this, PI3K-C2β is highly expressed in lymph-nodes metastases compared to matching primary tumors. These data demonstrate that PI3K-C2β plays a pivotal role in breast cancer progression and in metastasis development. Our data indicate that PI3K-C2β may represent a key molecular switch that regulates a rate-limiting step in breast tumor progression and therefore it may be targeted to limit breast cancer spread.


Effect of maternal exposure to endocrine disrupting chemicals on reproduction and mammary gland development in female Sprague-Dawley rats.

  • Fabiana Manservisi‎ et al.
  • Reproductive toxicology (Elmsford, N.Y.)‎
  • 2015‎

The aim of the study is to determine whether low doses of "endocrine disrupting chemicals" (EDCs) affect the development and proliferative activity of the mammary glands (MGs). Adult parous/nulliparous female Sprague-Dawley (SD) rats were treated from post-natal day (PND) 1 until PND 180 with diethylphthalate (DEP), methylparaben (MPB), triclosan (TCS) and a mixture at doses comparable to human exposure. The doses (mg/kg b.w./day) were: DEP=0.173; MPB=0.105; TCS=0.05. EDC treatment resulted in mortality rates >20% in pups as early as lactation day 7. Significant morphological/histological changes were observed at the end of lactation in the MGs of EDC-treated dams. The total transcriptome profile as well as lactation-related genes in MGs also corroborate the morphological findings as more profound gene expression changes are present only at the weaning period. The study highlights the heightened sensitivity of the MGs during critical windows of exposure, particularly pregnancy and lactation, with an impact on pups' survival.


Antitumor immunization of mothers delays tumor development in cancer-prone offspring.

  • Giuseppina Barutello‎ et al.
  • Oncoimmunology‎
  • 2015‎

Maternal immunization is successfully applied against some life-threatening infectious diseases as it can protect the mother and her offspring through the passive transfer of maternal antibodies. Here, we sought to evaluate whether the concept of maternal immunization could also be applied to cancer immune-prevention. We have previously shown that antibodies induced by DNA vaccination against rat Her2 (neu) protect heterozygous neu-transgenic female (BALB-neuT) mice from autochthonous mammary tumor development. We, herein, seek to evaluate whether a similar maternal immunization can confer antitumor protection to BALB-neuT offspring. Significantly extended tumor-free survival was observed in BALB-neuT offspring born and fed by mothers vaccinated against neu, as compared to controls. Maternally derived anti-neu immunoglobulin G (IgG) was successfully transferred from mothers to newborns and was responsible for the protective effect. Vaccinated mothers and offspring also developed active immunity against neu as revealed by the presence of T-cell-mediated cytotoxicity against the neu immunodominant peptide. This active response was due to the milk transfer of immune complexes that were formed between the neu extracellular domain, shed from vaccine-transfected muscle cells, and the anti-neu IgG induced by the vaccine. These findings show that maternal immunization has the potential to hamper mammary cancer in genetically predestinated offspring and to develop into applications against lethal neonatal cancer diseases for which therapeutic options are currently unavailable.


Vaccines against human HER2 prevent mammary carcinoma in mice transgenic for human HER2.

  • Carla De Giovanni‎ et al.
  • Breast cancer research : BCR‎
  • 2014‎

The availability of mice transgenic for the human HER2 gene (huHER2) and prone to the development of HER2-driven mammary carcinogenesis (referred to as FVB-huHER2 mice) prompted us to study active immunopreventive strategies targeting the human HER2 molecule in a tolerant host.


High nuclear level of Vav1 is a positive prognostic factor in early invasive breast tumors: a role in modulating genes related to the efficiency of metastatic process.

  • Silvia Grassilli‎ et al.
  • Oncotarget‎
  • 2014‎

Vav1 is one of the signalling proteins normally restricted to hematopoietic cells that results ectopically expressed in solid tumors, including breast cancer. By immunohistochemical analysis on TMAs containing invasive breast tumor from patients without lymph node involvement, we have found that Vav1 is expressed in almost all investigated cancers and shows a peculiar localization inside the nucleus of tumor cells. High amounts of nuclear Vav1 are positively correlated with low incidence of relapse, regardless phenotype and molecular subtype of breast neoplasia. In particular, Kaplan-Meier plots showed an elevated risk of distant metastasis in patients with low Vav1 expression compared with patients with high Vav1 expression in their tumors. Experiments performed with breast tumor-derived cells indicated that Vav1 negatively modulates their invasiveness in vitro and their metastatic efficiency in vivo, possibly by affecting the expression of genes involved in invasion and/or metastasis of breast tumors. Since the high heterogeneity of breast tumors makes difficult to predict the evolution of early breast neoplasias, the evaluation of nuclear Vav1 levels may help in the characterization and management of early breast cancer patients. In particular, Vav1 may serve as a prognostic biomarker and a target for new therapies aimed to prevent breast cancer progression.


Characterization of a genetic mouse model of lung cancer: a promise to identify Non-Small Cell Lung Cancer therapeutic targets and biomarkers.

  • Federica Riccardo‎ et al.
  • BMC genomics‎
  • 2014‎

Non-small cell lung cancer (NSCLC) accounts for 81% of all cases of lung cancer and they are often fatal because 60% of the patients are diagnosed at an advanced stage. Besides the need for earlier diagnosis, there is a high need for additional effective therapies. In this work, we investigated the feasibility of a lung cancer progression mouse model, mimicking features of human aggressive NSCLC, as biological reservoir for potential therapeutic targets and biomarkers.


Trop-2 is a determinant of breast cancer survival.

  • Federico Ambrogi‎ et al.
  • PloS one‎
  • 2014‎

Trop-2 is a calcium signal transducer that drives tumor growth. Anti-Trop-2 antibodies with selective reactivity versus Trop-2 maturation stages allowed to identify two different pools of Trop-2, one localized in the cell membrane and one in the cytoplasm. Of note, membrane-localized/functional Trop-2 was found to be differentially associated with determinants of tumor aggressiveness and distinct breast cancer subgroups. These findings candidated Trop-2 states to having an impact on cancer progression. We tested this model in breast cancer. A large, consecutive human breast cancer case series (702 cases; 8 years median follow-up) was analyzed by immunohistochemistry with anti-Trop-2 antibodies with selective reactivity for cytoplasmic-retained versus functional, membrane-associated Trop-2. We show that membrane localization of Trop-2 is an unfavorable prognostic factor for overall survival (1+ versus 0 for all deaths: hazard ratio, 1.63; P = 0.04), whereas intracellular Trop-2 has a favorable impact on prognosis, with an adjusted hazard ratio for all deaths of 0.48 (high versus low; P = 0.003). A corresponding impact of intracellular Trop-2 was found on disease relapse (high versus low: hazard ratio, 0.51; P = 0.004). Altogether, we demonstrate that the Trop-2 activation states are critical determinants of tumor progression and are powerful indicators of breast cancer patients survival.


The scaffold protein p140Cap limits ERBB2-mediated breast cancer progression interfering with Rac GTPase-controlled circuitries.

  • Silvia Grasso‎ et al.
  • Nature communications‎
  • 2017‎

The docking protein p140Cap negatively regulates tumour cell features. Its relevance on breast cancer patient survival, as well as its ability to counteract relevant cancer signalling pathways, are not fully understood. Here we report that in patients with ERBB2-amplified breast cancer, a p140Cap-positive status associates with a significantly lower probability of developing a distant event, and a clear difference in survival. p140Cap dampens ERBB2-positive tumour cell progression, impairing tumour onset and growth in the NeuT mouse model, and counteracting epithelial mesenchymal transition, resulting in decreased metastasis formation. One major mechanism is the ability of p140Cap to interfere with ERBB2-dependent activation of Rac GTPase-controlled circuitries. Our findings point to a specific role of p140Cap in curbing the aggressiveness of ERBB2-amplified breast cancers and suggest that, due to its ability to impinge on specific molecular pathways, p140Cap may represent a predictive biomarker of response to targeted anti-ERBB2 therapies.


Mesenchymal/stromal gene expression signature relates to basal-like breast cancers, identifies bone metastasis and predicts resistance to therapies.

  • Cristina Marchini‎ et al.
  • PloS one‎
  • 2010‎

Mounting clinical and experimental evidence suggests that the shift of carcinomas towards a mesenchymal phenotype is a common paradigm for both resistance to therapy and tumor recurrence. However, the mesenchymalization of carcinomas has not yet entered clinical practice as a crucial diagnostic paradigm.


Triggering CD40 on endothelial cells contributes to tumor growth.

  • Claudia Chiodoni‎ et al.
  • The Journal of experimental medicine‎
  • 2006‎

Inflammatory cells can either promote or inhibit tumor growth. Here we studied whether CD40, a key molecule for adaptive immune response, has any role in mammary carcinogenesis of BALB/NeuT transgenic tumor-prone mice. We transferred the HER2/neu oncogene into CD40-null background to obtain the CD40-KO/NeuT strain. CD40-KO/NeuT mice showed delayed tumor onset and reduced tumor multiplicity. BM (BM) transplantation experiments excluded a role of BM-derived cells in the reduced tumorigenicity associated with CD40 deficiency. Rather, CD40 expressed by endothelial cells (ECs) takes part to the angiogenic process. Accordingly, large vessels, well organized around the tumor lobular structures, characterize BALB/NeuT tumors, whereas tiny numerous vessels with scarce extracellular matrix are dispersed in the parenchyma of poorly organized CD40-KO/NeuT tumors. Activated platelets, which may interact with and activate ECs, are a possible source of CD40L. Their localization within tumor vessels prompted the idea of treating BALB/NeuT and CD40-KO/NeuT mice chronically with the anti-platelet drug clopidogrel, known to inhibit platelet CD40L expression. Treatment of BALB/NeuT mice reduced tumor growth to a level similar to CD40-deficient mice, whereas CD40-KO/NeuT mice treated or not showed the same attenuated tumor outgrowth, indicating that activated platelets are the likely source of CD40L in this model. Collectively, these data point to a participation of CD40/CD40L in the angiogenic processes associated with mammary carcinogenesis of BALB/NeuT mice.


Resveratrol fuels HER2 and ERα-positive breast cancer behaving as proteasome inhibitor.

  • Cristina Andreani‎ et al.
  • Aging‎
  • 2017‎

The phytoestrogen resveratrol has been reported to possess cancer chemo-preventive activity on the basis of its effects on tumor cell lines and xenograft or carcinogen-inducible in vivo models. Here we investigated the effects of resveratrol on spontaneous mammary carcinogenesis using Δ16HER2 mice as HER2+/ERα+ breast cancer model. Instead of inhibiting tumor growth, resveratrol treatment (0.0001% in drinking water; daily intake of 4μg/mouse) shortened tumor latency and enhanced tumor multiplicity in Δ16HER2 mice. This in vivo tumor-promoting effect of resveratrol was associated with up-regulation of Δ16HER2 and down-regulation of ERα protein levels and was recapitulated in vitro by murine (CAM6) and human (BT474) tumor cell lines. Our results demonstrate that resveratrol, acting as a proteasome inhibitor, leads to Δ16HER2 accumulation which favors the formation of Δ16HER2/HER3 heterodimers. The consequential activation of downstream mTORC1/p70S6K/4EBP1 pathway triggers cancer growth and proliferation. This study provides evidence that resveratrol mechanism of action (and hence its effects) depends on the intrinsic molecular properties of the cancer model under investigation, exerting a tumor-promoting effect in luminal B breast cancer subtype models.


Intradermal DNA Electroporation Induces Cellular and Humoral Immune Response and Confers Protection against HER2/neu Tumor.

  • Alessia Lamolinara‎ et al.
  • Journal of immunology research‎
  • 2015‎

Skin represents an attractive target for DNA vaccine delivery because of its natural richness in APCs, whose targeting may potentiate the effect of vaccination. Nevertheless, intramuscular electroporation is the most common delivery method for ECTM vaccination. In this study we assessed whether intradermal administration could deliver the vaccine into different cell types and we analyzed the evolution of tissue infiltrate elicited by the vaccination protocol. Intradermal electroporation (EP) vaccination resulted in transfection of different skin layers, as well as mononuclear cells. Additionally, we observed a marked recruitment of reactive infiltrates mainly 6-24 hours after treatment and inflammatory cells included CD11c(+). Moreover, we tested the efficacy of intradermal vaccination against Her2/neu antigen in cellular and humoral response induction and consequent protection from a Her2/neu tumor challenge in Her2/neu nontolerant and tolerant mice. A significant delay in transplantable tumor onset was observed in both BALB/c (p ≤ 0,0003) and BALB-neuT mice (p = 0,003). Moreover, BALB-neuT mice displayed slow tumor growth as compared to control group (p < 0,0016). In addition, while in vivo cytotoxic response was observed only in BALB/c mice, a significant antibody response was achieved in both mouse models. Our results identify intradermal EP vaccination as a promising method for delivering Her2/neu DNA vaccine.


Prognostic relevance of LGALS3BP in human colorectal carcinoma.

  • Enza Piccolo‎ et al.
  • Journal of translational medicine‎
  • 2015‎

A previous report has shown that LGALS3BP (also known as 90K or Mac-2 BP) has antitumor activity in colorectal cancer (CRC) via suppression of Wnt signalling with a novel mechanism of ISGylation-dependent ubiquitination of β-catenin. The role of LGALS3BP in CRC prognosis was investigated.


Preclinical validation of 3-phosphoinositide-dependent protein kinase 1 inhibition in pancreatic cancer.

  • Aikaterini Emmanouilidi‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2019‎

The very aggressive nature and low survival rate of pancreatic ductal adenocarcinoma (PDAC) dictates the necessity to find novel efficacious therapies. Recent evidence suggests that phosphoinositide 3-kinase (PI3K) and 3-phosphoinositide-dependent protein kinase 1 (PDK1) are key effectors of oncogenic KRAS in PDAC. Herein, we report the role and mechanism of action of PDK1, a protein kinase of the AGC family, in PDAC.


The SRCIN1/p140Cap adaptor protein negatively regulates the aggressiveness of neuroblastoma.

  • Silvia Grasso‎ et al.
  • Cell death and differentiation‎
  • 2020‎

Neuroblastoma is the most common extra-cranial pediatric solid tumor, responsible for 13-15% of pediatric cancer death. Its intrinsic heterogeneity makes it difficult to target for successful therapy. The adaptor protein p140Cap/SRCIN1 negatively regulates tumor cell features and limits breast cancer progression. This study wish to assess if p140Cap is a key biological determinant of neuroblastoma outcome. RNAseq profiles of a large cohort of neuroblastoma patients show that SRCIN1 mRNA levels are an independent risk factor inversely correlated to disease aggressiveness. In high-risk patients, CGH+SNP microarray analysis of primary neuroblastoma identifies SRCIN1 as frequently altered by hemizygous deletion, copy-neutral loss of heterozygosity, or disruption. Functional experiments show that p140Cap negatively regulates Src and STAT3 signaling, affects anchorage-independent growth and migration, in vivo tumor growth and spontaneous lung metastasis formation. p140Cap also increases sensitivity of neuroblastoma cells to doxorubicin and etoposide treatment, as well as to a combined treatment with chemotherapy drugs and Src inhibitors. Our functional findings point to a causal role of p140Cap in curbing the aggressiveness of neuroblastoma, due to its ability to impinge on specific molecular pathways, and to sensitize cells to therapeutic treatment. This study provides the first evidence that the SRCIN1/p140Cap adaptor protein is a key player in neuroblastoma as a new independent prognostic marker for patient outcome and treatment. Altogether, these data highlight the potential clinical impact of SRCIN1/p140Cap expression in neuroblastoma tumors, in terms of reducing cytotoxic effects of chemotherapy, one of the main issues for pediatric tumor treatment.


Interrupting the nitrosative stress fuels tumor-specific cytotoxic T lymphocytes in pancreatic cancer.

  • Francesco De Sanctis‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2022‎

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest tumors owing to its robust desmoplasia, low immunogenicity, and recruitment of cancer-conditioned, immunoregulatory myeloid cells. These features strongly limit the success of immunotherapy as a single agent, thereby suggesting the need for the development of a multitargeted approach. The goal is to foster T lymphocyte infiltration within the tumor landscape and neutralize cancer-triggered immune suppression, to enhance the therapeutic effectiveness of immune-based treatments, such as anticancer adoptive cell therapy (ACT).


Duality of Nrf2 in iron-overload cardiomyopathy.

  • Enrica Federti‎ et al.
  • Haematologica‎
  • 2023‎

Cardiomyopathy deeply affects quality of life and mortality of patients with b-thalassemia or with transfusion-dependent myelodysplastic syndromes. Recently, a link between Nrf2 activity and iron metabolism has been reported in liver ironoverload murine models. Here, we studied C57B6 mice as healthy control and nuclear erythroid factor-2 knockout (Nrf2-/-) male mice aged 4 and 12 months. Eleven-month-old wild-type and Nrf2-/- mice were fed with either standard diet or a diet containing 2.5% carbonyl-iron (iron overload [IO]) for 4 weeks. We show that Nrf2-/- mice develop an age-dependent cardiomyopathy, characterized by severe oxidation, degradation of SERCA2A and iron accumulation. This was associated with local hepcidin expression and increased serum non-transferrin-bound iron, which promotes maladaptive cardiac remodeling and interstitial fibrosis related to overactivation of the TGF-b pathway. When mice were exposed to IO diet, the absence of Nrf2 was paradoxically protective against further heart iron accumulation. Indeed, the combination of prolonged oxidation and the burst induced by IO diet resulted in activation of the unfolded protein response (UPR) system, which in turn promotes hepcidin expression independently from heart iron accumulation. In the heart of Hbbth3/+ mice, a model of b-thalassemia intermedia, despite the activation of Nrf2 pathway, we found severe protein oxidation, activation of UPR system and cardiac fibrosis independently from heart iron content. We describe the dual role of Nrf2 when aging is combined with IO and its novel interrelation with UPR system to ensure cell survival. We open a new perspective for early and intense treatment of cardiomyopathy in patients with b-thalassemia before the appearance of heart iron accumulation.


The HSP90/R2TP assembly chaperone promotes cell proliferation in the intestinal epithelium.

  • Chloé Maurizy‎ et al.
  • Nature communications‎
  • 2021‎

The R2TP chaperone cooperates with HSP90 to integrate newly synthesized proteins into multi-subunit complexes, yet its role in tissue homeostasis is unknown. Here, we generated conditional, inducible knock-out mice for Rpap3 to inactivate this core component of R2TP in the intestinal epithelium. In adult mice, Rpap3 invalidation caused destruction of the small intestinal epithelium and death within 10 days. Levels of R2TP substrates decreased, with strong effects on mTOR, ATM and ATR. Proliferative stem cells and progenitors deficient for Rpap3 failed to import RNA polymerase II into the nucleus and they induced p53, cell cycle arrest and apoptosis. Post-mitotic, differentiated cells did not display these alterations, suggesting that R2TP clients are preferentially built in actively proliferating cells. In addition, high RPAP3 levels in colorectal tumors from patients correlate with bad prognosis. Here, we show that, in the intestine, the R2TP chaperone plays essential roles in normal and tumoral proliferation.


Human cytomegalovirus infection enhances 5‑lipoxygenase and cycloxygenase‑2 expression in colorectal cancer.

  • Mattia Russel Pantalone‎ et al.
  • International journal of oncology‎
  • 2023‎

Colorectal cancer (CRC) is one of the most common and fatal types of cancer. Inflammation promotes CRC development, however, the underlying etiological factors are unknown. Human cytomegalovirus (HCMV), a virus that induces inflammation and other cancer hallmarks, has been detected in several types of malignancy, including CRC. The present study investigated whether HCMV infection was associated with expression of the pro‑inflammatory enzymes 5‑lipoxygenase (5‑LO) and cyclooxygenase‑2 (COX‑2) and other molecular, genetic and clinicopathological CRC features. The present study assessed 146 individual paraffin‑embedded CRC tissue microarray (TMA) cores already characterized for TP53 and KRAS mutations, microsatellite instability (MSI) status, Ki‑67 index and EGFR by immunohistochemistry (IHC). The cores were further analyzed by IHC for the expression of two HCMV proteins (Immediate Early, IE and pp65) and the inflammatory markers 5‑LO and COX‑2. The CRC cell lines Caco‑2 and LS‑174T were infected with HCMV strain VR1814, treated with antiviral drug ganciclovir (GCV) and/or anti‑inflammatory drug celecoxib (CCX) and analyzed by reverse transcription‑quantitative PCR and immunofluorescence for 5‑LO, COX‑2, IE and pp65 transcripts and proteins. HCMV IE and pp65 proteins were detected in ~90% of the CRC cases tested; this was correlated with COX‑2, 5‑LO and KI‑67 expression, but not with EGFR immunostaining, TP53 and KRAS mutations or MSI status. In vitro, HCMV infection upregulated 5‑LO and COX‑2 transcript and proteins in both Caco‑2 and LS‑174T cells and enhanced cell proliferation as determined by MTT assay. Treatment with GCV and CCX significantly decreased the transcript levels of COX‑2, 5‑LO, HCMV IE and pp65 in infected cells. HCMV was widely expressed in CRC and may promote inflammation and serve as a potential new target for CRC therapy.


3D-Informed Targeting of the Trop-2 Signal-Activation Site Drives Selective Cancer Vulnerability.

  • Emanuela Guerra‎ et al.
  • Molecular cancer therapeutics‎
  • 2023‎

Next-generation Trop-2-targeted therapy against advanced cancers is hampered by expression of Trop-2 in normal tissues. We discovered that Trop-2 undergoes proteolytic activation by ADAM10 in cancer cells, leading to the exposure of a previously inaccessible protein groove flanked by two N-glycosylation sites. We designed a recognition strategy for this region, to drive selective cancer vulnerability in patients. Most undiscriminating anti-Trop-2 mAbs recognize a single immunodominant epitope. Hence, we removed it by deletion mutagenesis. Cancer-specific, glycosylation-prone mAbs were selected by ELISA, bio-layer interferometry, flow cytometry, confocal microscopy for differential binding to cleaved/activated, wild-type and glycosylation site-mutagenized Trop-2. The resulting 2G10 mAb family binds Trop-2-expressing cancer cells, but not Trop-2 on normal cells. We humanized 2G10 by state-of-the-art complementarity determining region grafting/re-modeling, yielding Hu2G10. This antibody binds cancer-specific, cleaved/activated Trop-2 with Kd < 10-12 mol/L, and uncleaved/wtTrop-2 in normal cells with Kd 3.16×10-8 mol/L, thus promising an unprecedented therapeutic index in patients. In vivo, Hu2G10 ablates growth of Trop-2-expressing breast, colon, prostate cancers, but shows no evidence of systemic toxicity, paving the way for a paradigm shift in Trop-2-targeted therapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: