Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 28 papers

Nontoxic antimicrobials that evade drug resistance.

  • Stephen A Davis‎ et al.
  • Nature chemical biology‎
  • 2015‎

Drugs that act more promiscuously provide fewer routes for the emergence of resistant mutants. This benefit, however, often comes at the cost of serious off-target and dose-limiting toxicities. The classic example is the antifungal amphotericin B (AmB), which has evaded resistance for more than half a century. We report markedly less toxic amphotericins that nevertheless evade resistance. They are scalably accessed in just three steps from the natural product, and they bind their target (the fungal sterol ergosterol) with far greater selectivity than AmB. Hence, they are less toxic and far more effective in a mouse model of systemic candidiasis. To our surprise, exhaustive efforts to select for mutants resistant to these more selective compounds revealed that they are just as impervious to resistance as AmB. Thus, highly selective cytocidal action and the evasion of resistance are not mutually exclusive, suggesting practical routes to the discovery of less toxic, resistance-evasive therapies.


Translation Inhibition by Rocaglates Activates a Species-Specific Cell Death Program in the Emerging Fungal Pathogen Candida auris.

  • Kali R Iyer‎ et al.
  • mBio‎
  • 2020‎

Fungal infections are a major contributor to infectious disease-related deaths worldwide. Recently, global emergence of the fungal pathogen Candida auris has caused considerable concern because most C. auris isolates are resistant to fluconazole, the most commonly administered antifungal, and some isolates are resistant to drugs from all three major antifungal classes. To identify novel agents with bioactivity against C. auris, we screened 2,454 compounds from a diversity-oriented synthesis collection. Of the five hits identified, most shared a common rocaglate core structure and displayed fungicidal activity against C. auris These rocaglate hits inhibited translation in C. auris but not in its pathogenic relative Candida albicans Species specificity was contingent on variation at a single amino acid residue in Tif1, a fungal member of the eukaryotic initiation factor 4A (eIF4A) family of translation initiation factors known to be targeted by rocaglates. Rocaglate-mediated inhibition of translation in C. auris activated a cell death program characterized by loss of mitochondrial membrane potential, increased caspase-like activity, and disrupted vacuolar homeostasis. In a rocaglate-sensitized C. albicans mutant engineered to express translation initiation factor 1 (Tif1) with the variant amino acid that we had identified in C. auris, translation was inhibited but no programmed cell death phenotypes were observed. This surprising finding suggests divergence between these related fungal pathogens in their pathways of cellular responses to translation inhibition. From a therapeutic perspective, the chemical biology that we have uncovered reveals species-specific vulnerability in C. auris and identifies a promising target for development of new, mechanistically distinct antifungals in the battle against this emerging pathogen.IMPORTANCE Emergence of the fungal pathogen Candida auris has ignited intrigue and alarm within the medical community and the public at large. This pathogen is unusually resistant to antifungals, threatening to overwhelm current management options. By screening a library of structurally diverse molecules, we found that C. auris is surprisingly sensitive to translation inhibition by a class of compounds known as rocaglates (also known as flavaglines). Despite the high level of conservation across fungi in their protein synthesis machinery, these compounds inhibited translation initiation and activated a cell death program in C. auris but not in its relative Candida albicans Our findings highlight a surprising divergence across the cell death programs operating in Candida species and underscore the need to understand the specific biology of a pathogen in attempting to develop more-effective treatments against it.


Adaptive laboratory evolution in S. cerevisiae highlights role of transcription factors in fungal xenobiotic resistance.

  • Sabine Ottilie‎ et al.
  • Communications biology‎
  • 2022‎

In vitro evolution and whole genome analysis were used to comprehensively identify the genetic determinants of chemical resistance in Saccharomyces cerevisiae. Sequence analysis identified many genes contributing to the resistance phenotype as well as numerous amino acids in potential targets that may play a role in compound binding. Our work shows that compound-target pairs can be conserved across multiple species. The set of 25 most frequently mutated genes was enriched for transcription factors, and for almost 25 percent of the compounds, resistance was mediated by one of 100 independently derived, gain-of-function SNVs found in a 170 amino acid domain in the two Zn2C6 transcription factors YRR1 and YRM1 (p < 1 × 10-100). This remarkable enrichment for transcription factors as drug resistance genes highlights their important role in the evolution of antifungal xenobiotic resistance and underscores the challenge to develop antifungal treatments that maintain potency.


An oxindole efflux inhibitor potentiates azoles and impairs virulence in the fungal pathogen Candida auris.

  • Kali R Iyer‎ et al.
  • Nature communications‎
  • 2020‎

Candida auris is an emerging fungal pathogen that exhibits resistance to multiple drugs, including the most commonly prescribed antifungal, fluconazole. Here, we use a combinatorial screening approach to identify a bis-benzodioxolylindolinone (azoffluxin) that synergizes with fluconazole against C. auris. Azoffluxin enhances fluconazole activity through the inhibition of efflux pump Cdr1, thus increasing intracellular fluconazole levels. This activity is conserved across most C. auris clades, with the exception of clade III. Azoffluxin also inhibits efflux in highly azole-resistant strains of Candida albicans, another human fungal pathogen, increasing their susceptibility to fluconazole. Furthermore, azoffluxin enhances fluconazole activity in mice infected with C. auris, reducing fungal burden. Our findings suggest that pharmacologically targeting Cdr1 in combination with azoles may be an effective strategy to control infection caused by azole-resistant isolates of C. auris.


DYRK-family kinases regulate Candida albicans morphogenesis and virulence through the Ras1/PKA pathway.

  • Jessie MacAlpine‎ et al.
  • mBio‎
  • 2023‎

Candida albicans is an opportunistic human fungal pathogen that frequently causes life-threatening infections in immunocompromised individuals. To cause disease, the fungus employs several virulence traits, including its ability to transition between yeast and filamentous states. Previous work identified a role for the kinase Yak1 in regulating C. albicans filamentation. Here, we demonstrate that Yak1 regulates morphogenesis through the canonical cAMP/PKA pathway and that this regulation is environmentally contingent, as host-relevant concentrations of CO2 bypass the requirement of Yak1 for C. albicans morphogenesis. We show a related kinase, Pom1, is important for filamentation in the absence of Yak1 under these host-relevant conditions, as deletion of both genes blocked filamentous growth under all conditions tested. Finally, we demonstrate that Yak1 is required for filamentation in a mouse model of C. albicans dermatitis using genetic and pharmacological approaches. Overall, our results expand our understanding of how Yak1 regulates an important virulence trait in C. albicans.


Chaperones as thermodynamic sensors of drug-target interactions reveal kinase inhibitor specificities in living cells.

  • Mikko Taipale‎ et al.
  • Nature biotechnology‎
  • 2013‎

The interaction between the HSP90 chaperone and its client kinases is sensitive to the conformational status of the kinase, and stabilization of the kinase fold by small molecules strongly decreases chaperone interaction. Here we exploit this observation and assay small-molecule binding to kinases in living cells, using chaperones as 'thermodynamic sensors'. The method allows determination of target specificities of both ATP-competitive and allosteric inhibitors in the kinases' native cellular context in high throughput. We profile target specificities of 30 diverse kinase inhibitors against >300 kinases. Demonstrating the value of the assay, we identify ETV6-NTRK3 as a target of the FDA-approved drug crizotinib (Xalkori). Crizotinib inhibits proliferation of ETV6-NTRK3-dependent tumor cells with nanomolar potency and induces the regression of established tumor xenografts in mice. Finally, we show that our approach is applicable to other chaperone and target classes by assaying HSP70/steroid hormone receptor and CDC37/kinase interactions, suggesting that chaperone interactions will have broad application in detecting drug-target interactions in vivo.


Identification of triazenyl indoles as inhibitors of fungal fatty acid biosynthesis with broad-spectrum activity.

  • Kali R Iyer‎ et al.
  • Cell chemical biology‎
  • 2023‎

Rising drug resistance among pathogenic fungi, paired with a limited antifungal arsenal, poses an increasing threat to human health. To identify antifungal compounds, we screened the RIKEN natural product depository against representative isolates of four major human fungal pathogens. This screen identified NPD6433, a triazenyl indole with broad-spectrum activity against all screening strains, as well as the filamentous mold Aspergillus fumigatus. Mechanistic studies indicated that NPD6433 targets the enoyl reductase domain of fatty acid synthase 1 (Fas1), covalently inhibiting its flavin mononucleotide-dependent NADPH-oxidation activity and arresting essential fatty acid biosynthesis. Robust Fas1 inhibition kills Candida albicans, while sublethal inhibition impairs diverse virulence traits. At well-tolerated exposures, NPD6433 extended the lifespan of nematodes infected with azole-resistant C. albicans. Overall, identification of NPD6433 provides a tool with which to explore lipid homeostasis as a therapeutic target in pathogenic fungi and reveals a mechanism by which Fas1 function can be inhibited.


Structural basis for species-selective targeting of Hsp90 in a pathogenic fungus.

  • Luke Whitesell‎ et al.
  • Nature communications‎
  • 2019‎

New strategies are needed to counter the escalating threat posed by drug-resistant fungi. The molecular chaperone Hsp90 affords a promising target because it supports survival, virulence and drug-resistance across diverse pathogens. Inhibitors of human Hsp90 under development as anticancer therapeutics, however, exert host toxicities that preclude their use as antifungals. Seeking a route to species-selectivity, we investigate the nucleotide-binding domain (NBD) of Hsp90 from the most common human fungal pathogen, Candida albicans. Here we report structures for this NBD alone, in complex with ADP or in complex with known Hsp90 inhibitors. Encouraged by the conformational flexibility revealed by these structures, we synthesize an inhibitor with >25-fold binding-selectivity for fungal Hsp90 NBD. Comparing co-crystals occupied by this probe vs. anticancer Hsp90 inhibitors revealed major, previously unreported conformational rearrangements. These insights and our probe's species-selectivity in culture support the feasibility of targeting Hsp90 as a promising antifungal strategy.


HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers.

  • Marc L Mendillo‎ et al.
  • Cell‎
  • 2012‎

Heat-Shock Factor 1 (HSF1), master regulator of the heat-shock response, facilitates malignant transformation, cancer cell survival, and proliferation in model systems. The common assumption is that these effects are mediated through regulation of heat-shock protein (HSP) expression. However, the transcriptional network that HSF1 coordinates directly in malignancy and its relationship to the heat-shock response have never been defined. By comparing cells with high and low malignant potential alongside their nontransformed counterparts, we identify an HSF1-regulated transcriptional program specific to highly malignant cells and distinct from heat shock. Cancer-specific genes in this program support oncogenic processes: cell-cycle regulation, signaling, metabolism, adhesion and translation. HSP genes are integral to this program, however, many are uniquely regulated in malignancy. This HSF1 cancer program is active in breast, colon and lung tumors isolated directly from human patients and is strongly associated with metastasis and death. Thus, HSF1 rewires the transcriptome in tumorigenesis, with prognostic and therapeutic implications.


Overcoming Fungal Echinocandin Resistance through Inhibition of the Non-essential Stress Kinase Yck2.

  • Tavia Caplan‎ et al.
  • Cell chemical biology‎
  • 2020‎

New strategies are urgently needed to counter the threat to human health posed by drug-resistant fungi. To explore an as-yet unexploited target space for antifungals, we screened a library of protein kinase inhibitors for the ability to reverse resistance of the most common human fungal pathogen, Candida albicans, to caspofungin, a widely used antifungal. This screen identified multiple 2,3-aryl-pyrazolopyridine scaffold compounds capable of restoring caspofungin sensitivity. Using chemical genomic, biochemical, and structural approaches, we established the target for our most potent compound as Yck2, a casein kinase 1 family member. Combination of this compound with caspofungin eradicated drug-resistant C. albicans infection while sparing co-cultured human cells. In mice, genetic depletion of YCK2 caused an ∼3-log10 decline in fungal burden in a model of systemic caspofungin-resistant C. albicans infection. Structural insights and our tool compound's profile in culture support targeting the Yck2 kinase function as a broadly active antifungal strategy.


A small molecule produced by Lactobacillus species blocks Candida albicans filamentation by inhibiting a DYRK1-family kinase.

  • Jessie MacAlpine‎ et al.
  • Nature communications‎
  • 2021‎

The fungus Candida albicans is an opportunistic pathogen that can exploit imbalances in microbiome composition to invade its human host, causing pathologies ranging from vaginal candidiasis to fungal sepsis. Bacteria of the genus Lactobacillus are colonizers of human mucosa and can produce compounds with bioactivity against C. albicans. Here, we show that some Lactobacillus species produce a small molecule under laboratory conditions that blocks the C. albicans yeast-to-filament transition, an important virulence trait. It remains unexplored whether the compound is produced in the context of the human host. Bioassay-guided fractionation of Lactobacillus-conditioned medium linked this activity to 1-acetyl-β-carboline (1-ABC). We use genetic approaches to show that filamentation inhibition by 1-ABC requires Yak1, a DYRK1-family kinase. Additional biochemical characterization of structurally related 1-ethoxycarbonyl-β-carboline confirms that it inhibits Yak1 and blocks C. albicans biofilm formation. Thus, our findings reveal Lactobacillus-produced 1-ABC can prevent the yeast-to-filament transition in C. albicans through inhibition of Yak1.


Rieske head domain dynamics and indazole-derivative inhibition of Candida albicans complex III.

  • Justin M Di Trani‎ et al.
  • Structure (London, England : 1993)‎
  • 2022‎

Electron transfer between respiratory complexes drives transmembrane proton translocation, which powers ATP synthesis and membrane transport. The homodimeric respiratory complex III (CIII2) oxidizes ubiquinol to ubiquinone, transferring electrons to cytochrome c and translocating protons through a mechanism known as the Q cycle. The Q cycle involves ubiquinol oxidation and ubiquinone reduction at two different sites within each CIII monomer, as well as movement of the head domain of the Rieske subunit. We determined structures of Candida albicans CIII2 by cryoelectron microscopy (cryo-EM), revealing endogenous ubiquinone and visualizing the continuum of Rieske head domain conformations. Analysis of these conformations does not indicate cooperativity in the Rieske head domain position or ligand binding in the two CIIIs of the CIII2 dimer. Cryo-EM with the indazole derivative Inz-5, which inhibits fungal CIII2 and is fungicidal when administered with fungistatic azole drugs, showed that Inz-5 inhibition alters the equilibrium of Rieske head domain positions.


The macrophage-derived protein PTMA induces filamentation of the human fungal pathogen Candida albicans.

  • Nicola T Case‎ et al.
  • Cell reports‎
  • 2021‎

Evasion of killing by immune cells is crucial for fungal survival in the host. For the human fungal pathogen Candida albicans, internalization by macrophages induces a transition from yeast to filaments that promotes macrophage death and fungal escape. Nutrient deprivation, alkaline pH, and oxidative stress have been implicated as triggers of intraphagosomal filamentation; however, the impact of other host-derived factors remained unknown. Here, we show that lysates prepared from macrophage-like cell lines and primary macrophages robustly induce C. albicans filamentation. Enzymatic treatment of lysate implicates a phosphorylated protein, and bioactivity-guided fractionation coupled to mass spectrometry identifies the immunomodulatory phosphoprotein PTMA as a candidate trigger of C. albicans filamentation. Immunoneutralization of PTMA within lysate abolishes its activity, strongly supporting PTMA as a filament-inducing component of macrophage lysate. Adding to the known repertoire of physical factors, this work implicates a host protein in the induction of C. albicans filamentation within immune cells.


HSP90 Shapes the Consequences of Human Genetic Variation.

  • Georgios I Karras‎ et al.
  • Cell‎
  • 2017‎

HSP90 acts as a protein-folding buffer that shapes the manifestations of genetic variation in model organisms. Whether HSP90 influences the consequences of mutations in humans, potentially modifying the clinical course of genetic diseases, remains unknown. By mining data for >1,500 disease-causing mutants, we found a strong correlation between reduced phenotypic severity and a dominant (HSP90 ≥ HSP70) increase in mutant engagement by HSP90. Examining the cancer predisposition syndrome Fanconi anemia in depth revealed that mutant FANCA proteins engaged predominantly by HSP70 had severely compromised function. In contrast, the function of less severe mutants was preserved by a dominant increase in HSP90 binding. Reducing HSP90's buffering capacity with inhibitors or febrile temperatures destabilized HSP90-buffered mutants, exacerbating FA-related chemosensitivities. Strikingly, a compensatory FANCA somatic mutation from an "experiment of nature" in monozygotic twins both prevented anemia and reduced HSP90 binding. These findings provide one plausible mechanism for the variable expressivity and environmental sensitivity of genetic diseases.


Fitness trade-offs restrict the evolution of resistance to amphotericin B.

  • Benjamin Matteson Vincent‎ et al.
  • PLoS biology‎
  • 2013‎

The evolution of drug resistance in microbial pathogens provides a paradigm for investigating evolutionary dynamics with important consequences for human health. Candida albicans, the leading fungal pathogen of humans, rapidly evolves resistance to two major antifungal classes, the triazoles and echinocandins. In contrast, resistance to the third major antifungal used in the clinic, amphotericin B (AmB), remains extremely rare despite 50 years of use as monotherapy. We sought to understand this long-standing evolutionary puzzle. We used whole genome sequencing of rare AmB-resistant clinical isolates as well as laboratory-evolved strains to identify and investigate mutations that confer AmB resistance in vitro. Resistance to AmB came at a great cost. Mutations that conferred resistance simultaneously created diverse stresses that required high levels of the molecular chaperone Hsp90 for survival, even in the absence of AmB. This requirement stemmed from severe internal stresses caused by the mutations, which drastically diminished tolerance to external stresses from the host. AmB-resistant mutants were hypersensitive to oxidative stress, febrile temperatures, and killing by neutrophils and also had defects in filamentation and tissue invasion. These strains were avirulent in a mouse infection model. Thus, the costs of evolving resistance to AmB limit the emergence of this phenotype in the clinic. Our work provides a vivid example of the ways in which conflicting selective pressures shape evolutionary trajectories and illustrates another mechanism by which the Hsp90 buffer potentiates the emergence of new phenotypes. Developing antibiotics that deliberately create such evolutionary constraints might offer a strategy for limiting the rapid emergence of drug resistance.


Inhibiting mitochondrial phosphate transport as an unexploited antifungal strategy.

  • Catherine A McLellan‎ et al.
  • Nature chemical biology‎
  • 2018‎

The development of effective antifungal therapeutics remains a formidable challenge because of the close evolutionary relationship between humans and fungi. Mitochondrial function may present an exploitable vulnerability because of its differential utilization in fungi and its pivotal roles in fungal morphogenesis, virulence, and drug resistance already demonstrated by others. We now report mechanistic characterization of ML316, a thiohydantoin that kills drug-resistant Candida species at nanomolar concentrations through fungal-selective inhibition of the mitochondrial phosphate carrier Mir1. Using genetic, biochemical, and metabolomic approaches, we established ML316 as the first Mir1 inhibitor. Inhibition of Mir1 by ML316 in respiring yeast diminished mitochondrial oxygen consumption, resulting in an unusual metabolic catastrophe marked by citrate accumulation and death. In a mouse model of azole-resistant oropharyngeal candidiasis, ML316 reduced fungal burden and enhanced azole activity. Targeting Mir1 could provide a new, much-needed therapeutic strategy to address the rapidly rising burden of drug-resistant fungal infection.


FKBP12 contributes to α-synuclein toxicity by regulating the calcineurin-dependent phosphoproteome.

  • Gabriela Caraveo‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2017‎

Calcineurin is an essential Ca2+-dependent phosphatase. Increased calcineurin activity is associated with α-synuclein (α-syn) toxicity, a protein implicated in Parkinson's Disease (PD) and other neurodegenerative diseases. Calcineurin can be inhibited with Tacrolimus through the recruitment and inhibition of the 12-kDa cis-trans proline isomerase FK506-binding protein (FKBP12). Whether calcineurin/FKBP12 represents a native physiologically relevant assembly that occurs in the absence of pharmacological perturbation has remained elusive. We leveraged α-syn as a model to interrogate whether FKBP12 plays a role in regulating calcineurin activity in the absence of Tacrolimus. We show that FKBP12 profoundly affects the calcineurin-dependent phosphoproteome, promoting the dephosphorylation of a subset of proteins that contributes to α-syn toxicity. Using a rat model of PD, partial elimination of the functional interaction between FKBP12 and calcineurin, with low doses of the Food and Drug Administration (FDA)-approved compound Tacrolimus, blocks calcineurin's activity toward those proteins and protects against the toxic hallmarks of α-syn pathology. Thus, FKBP12 can endogenously regulate calcineurin activity with therapeutic implications for the treatment of PD.


Autoantibodies to villin occur frequently in IPEX, a severe immune dysregulation, syndrome caused by mutation of FOXP3.

  • Ichiro Kobayashi‎ et al.
  • Clinical immunology (Orlando, Fla.)‎
  • 2011‎

Intractable diarrhea is a major symptom of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome and associated with autoantibodies against enterocytes. Although autoimmune enteropathy (AIE)-related 75 kDa antigen (AIE-75) is a prominent autoantigen involved in the enteropathy associated with IPEX syndrome, some patients with this syndrome demonstrated autoantibody recognizing a 95 kDa protein rather than AIE-75 in the small intestine. We, herewith, identified villin, an actin-binding protein, as the 95 kDa antigen. Four of five sera from patients with IPEX syndrome reacted with a fusion protein of glutathione-S-transferase and full length villin (GST-villin), whereas only three of 98 control sera weakly reacted with GST-villin. Anti-AIE-75 antibody was detected in all five IPEX sera but not in normal or control disease sera. We conclude that both AIE-75 and villin appear to be brush border autoantigens in IPEX syndrome and could be used for the diagnosis of AIE in patients with presumptive IPEX syndrome.


Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis.

  • Chengkai Dai‎ et al.
  • Cell‎
  • 2007‎

Heat shock factor 1 (HSF1) is the master regulator of the heat shock response in eukaryotes, a very highly conserved protective mechanism. HSF1 function increases survival under a great many pathophysiological conditions. How it might be involved in malignancy remains largely unexplored. We report that eliminating HSF1 protects mice from tumors induced by mutations of the RAS oncogene or a hot spot mutation in the tumor suppressor p53. In cell culture, HSF1 supports malignant transformation by orchestrating a network of core cellular functions including proliferation, survival, protein synthesis, and glucose metabolism. The striking effects of HSF1 on oncogenic transformation are not limited to mouse systems or tumor initiation; human cancer lines of diverse origins show much greater dependence on HSF1 function to maintain proliferation and survival than their nontransformed counterparts. While it enhances organismal survival and longevity under most circumstances, HSF1 has the opposite effect in supporting the lethal phenomenon of cancer.


Mitochondrial metabolism promotes adaptation to proteotoxic stress.

  • Peter Tsvetkov‎ et al.
  • Nature chemical biology‎
  • 2019‎

The mechanisms by which cells adapt to proteotoxic stress are largely unknown, but are key to understanding how tumor cells, particularly in vivo, are largely resistant to proteasome inhibitors. Analysis of cancer cell lines, mouse xenografts and patient-derived tumor samples all showed an association between mitochondrial metabolism and proteasome inhibitor sensitivity. When cells were forced to use oxidative phosphorylation rather than glycolysis, they became proteasome-inhibitor resistant. This mitochondrial state, however, creates a unique vulnerability: sensitivity to the small molecule compound elesclomol. Genome-wide CRISPR-Cas9 screening showed that a single gene, encoding the mitochondrial reductase FDX1, could rescue elesclomol-induced cell death. Enzymatic function and nuclear-magnetic-resonance-based analyses further showed that FDX1 is the direct target of elesclomol, which promotes a unique form of copper-dependent cell death. These studies explain a fundamental mechanism by which cells adapt to proteotoxic stress and suggest strategies to mitigate proteasome inhibitor resistance.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: