Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

Selecting Targets for Tumor Imaging: An Overview of Cancer-Associated Membrane Proteins.

  • Martin C Boonstra‎ et al.
  • Biomarkers in cancer‎
  • 2016‎

Tumor targeting is a booming business: The global therapeutic monoclonal antibody market accounted for more than $78 billion in 2012 and is expanding exponentially. Tumors can be targeted with an extensive arsenal of monoclonal antibodies, ligand proteins, peptides, RNAs, and small molecules. In addition to therapeutic targeting, some of these compounds can also be applied for tumor visualization before or during surgery, after conjugation with radionuclides and/or near-infrared fluorescent dyes. The majority of these tumor-targeting compounds are directed against cell membrane-bound proteins. Various categories of targetable membrane-bound proteins, such as anchoring proteins, receptors, enzymes, and transporter proteins, exist. The functions and biological characteristics of these proteins determine their location and distribution on the cell membrane, making them more, or less, accessible, and therefore, it is important to understand these features. In this review, we evaluate the characteristics of cancer-associated membrane proteins and discuss their overall usability for cancer targeting, especially focusing on imaging applications.


5-Aminosalicylic acid inhibits TGF-beta1 signalling in colorectal cancer cells.

  • Pim J Koelink‎ et al.
  • Cancer letters‎
  • 2010‎

The transforming growth factor-beta (TGF-beta) pathway is an important pathway in the initiation and progression of colorectal cancer. We aimed to determine the effects of 5-aminosalicylic acid (5-ASA) on TGF-beta signalling in colorectal cancer cells in vitro. 5-ASA inhibited TGF-beta1 signalling in HCT116 cells and colonic fibroblasts, as judged by a TGF-beta-specific reporter gene assay, plasminogen activator inhibitor-1 mRNA and protein levels, fibroblast trans-differentiation, Smad3 phosphorylation and nuclear translocation. We conclude that 5-ASA inhibits TGF-beta1 signalling in colorectal cancer cells, and might be a potent adjuvant therapeutic drug, interfering with aberrant TGF-beta signalling in colorectal cancer.


The adaptive immune system promotes initiation of prostate carcinogenesis in a human c-Myc transgenic mouse model.

  • Monique H M Melis‎ et al.
  • Oncotarget‎
  • 2017‎

Increasing evidence from epidemiological and pathological studies suggests a role of the immune system in the initiation and progression of multiple cancers, including prostate cancer. Reports on the contribution of the adaptive immune system are contradictive, since both suppression and acceleration of disease development have been reported. This study addresses the functional role of lymphocytes in prostate cancer development using a genetically engineered mouse model (GEMM) of human c-Myc driven prostate cancer (Hi-Myc mice) combined with B and T cell deficiency (RAG1-/- mice). From a pre-cancerous stage on, Hi-Myc mice showed higher accumulation of immune cells in their prostates then wild-type mice, of which macrophages were the most abundant. The onset of invasive adenocarcinoma was delayed in Hi-MycRAG1-/- compared to Hi-Myc mice and associated with decreased infiltration of leukocytes into the prostate. In addition, lower levels of the cytokines CXCL2, CCL5 and TGF-β1 were detected in Hi-MycRAG1-/- compared to Hi-Myc mouse prostates. These results from a GEMM of prostate cancer provide new insights into the promoting role of the adaptive immune system in prostate cancer development. Our findings indicate that the endogenous adaptive immune system does not protect against de novo prostate carcinogenesis in Hi-Myc transgenic mice, but rather accelerates the formation of invasive adenocarcinomas. This may have implications for the development of novel treatment strategies.


Transcriptomic and immunophenotypic profiling reveals molecular and immunological hallmarks of colorectal cancer tumourigenesis.

  • Jessica Roelands‎ et al.
  • Gut‎
  • 2023‎

Biological insights into the stepwise development and progression of colorectal cancer (CRC) are imperative to develop tailored approaches for early detection and optimal clinical management of this disease. Here, we aimed to dissect the transcriptional and immunologic alterations that accompany malignant transformation in CRC and to identify clinically relevant biomarkers through spatial profiling of pT1 CRC samples.


Prognostic value and clinicopathologic characteristics of L1 cell adhesion molecule (L1CAM) in a large series of vulvar squamous cell carcinomas.

  • Marjolijn D Trietsch‎ et al.
  • Oncotarget‎
  • 2016‎

Vulvar cancer treatment is mostly curative, but also has high morbidity rates. In a search for markers that can identify patients at risk of metastases, we investigated the prognostic value of L1-cell adhesion molecule (L1CAM) in large series of vulvar squamous cell carcinomas (VSCCs). L1CAM promotes cell motility and is an emerging prognostic factor for metastasis in many cancer subtypes.


Mesenchymal stromal cells prevent progression of liver fibrosis in a novel zebrafish embryo model.

  • Danny van der Helm‎ et al.
  • Scientific reports‎
  • 2018‎

Chronic liver damage leads to the onset of fibrogenesis. Rodent models for liver fibrosis have been widely used, but are less suitable for screening purposes. Therefore the aim of our study was to design a novel model for liver fibrosis in zebrafish embryos, suitable for high throughput screening. Furthermore, we evaluated the efficacy of mesenchymal stromal cells (MSCs) to inhibit the fibrotic process and thereby the applicability of this model to evaluate therapeutic responses. Zebrafish embryos were exposed to TAA or CCL4 and mRNA levels of fibrosis-related genes (Collagen-1α1, Hand-2, and Acta-2) and tissue damage-related genes (TGF-β and SDF-1a, SDF-1b) were determined, while Sirius-red staining was used to estimate collagen deposition. Three days after start of TAA exposure, MSCs were injected after which the fibrotic response was determined. In contrast to CCL4, TAA resulted in an upregulation of the fibrosis-related genes, increased extracellular matrix deposition and decreased liver sizes suggesting the onset of fibrosis. The applicability of this model to evaluate therapeutic responses was shown by local treatment with MSCs which resulted in decreased expression of the fibrosis-related RNA markers. In conclusion, TAA induces liver fibrosis in zebrafish embryos, thereby providing a promising model for future mechanistic and therapeutic studies.


ALK1Fc Suppresses the Human Prostate Cancer Growth in in Vitro and in Vivo Preclinical Models.

  • Letizia Astrologo‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2017‎

Prostate cancer is the second most common cancer in men and lethality is normally associated with the consequences of metastasis rather than the primary tumor. Therefore, targeting the molecular pathways that underlie dissemination of primary tumor cells and the formation of metastases has a great clinical value. Bone morphogenetic proteins (BMPs) play a critical role in tumor progression and this study focuses on the role of BMP9- Activin receptor-Like Kinase 1 and 2 (ALK1 and ALK2) axis in prostate cancer. In order to study the effect of BMP9 in vitro and in vivo on cancer cells and tumor growth, we used a soluble chimeric protein consisting of the ALK1 extracellular domain (ECD) fused to human Fc (ALK1Fc) that prevents binding of BMP9 to its cell surface receptors and thereby blocks its ability to activate downstream signaling. ALK1Fc sequesters BMP9 and the closely related BMP10 while preserving the activation of ALK1 and ALK2 through other ligands. We show that ALK1Fc acts in vitro to decrease BMP9-mediated signaling and proliferation of prostate cancer cells with tumor initiating and metastatic potential. In line with these observations, we demonstrate that ALK1Fc also reduces tumor cell proliferation and tumor growth in vivo in an orthotopic transplantation model, as well as in the human patient derived xenograft BM18. Furthermore, we also provide evidence for crosstalk between BMP9 and NOTCH and find that ALK1Fc inhibits NOTCH signaling in human prostate cancer cells and blocks the induction of the NOTCH target Aldehyde dehydrogenase member ALDH1A1, which is a clinically relevant marker associated with poor survival and advanced-stage prostate cancer. Our study provides the first demonstration that ALK1Fc inhibits prostate cancer progression, identifying BMP9 as a putative therapeutic target and ALK1Fc as a potential therapy. Altogether, these findings support the validity of ongoing clinical development of drugs blocking ALK1 and ALK2 receptor activity.


The ABCs of Antigen Presentation by Stromal Non-Professional Antigen-Presenting Cells.

  • Tom J Harryvan‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Professional antigen-presenting cells (APCs), such as dendritic cells and macrophages, are known for their ability to present exogenous antigens to T cells. However, many other cell types, including endothelial cells, fibroblasts, and lymph node stromal cells, are also capable of presenting exogenous antigens to either CD8+ or CD4+ T cells via cross-presentation or major histocompatibility complex (MHC) class II-mediated presentation, respectively. Antigen presentation by these stromal nonprofessional APCs differentially affect T cell function, depending on the type of cells that present the antigen, as well as the local (inflammatory) micro-environment. It has been recently appreciated that nonprofessional APCs can, as such, orchestrate immunity against pathogens, tumor survival, or rejection, and aid in the progression of various auto-immune pathologies. Therefore, the interest for these nonprofessional APCs is growing as they might be an important target for enhancing various immunotherapies. In this review, the different nonprofessional APCs are discussed, as well as their functional consequences on the T cell response, with a focus on immuno-oncology.


Cancer-Associated Fibroblasts Are Key Determinants of Cancer Cell Invasion in the Earliest Stage of Colorectal Cancer.

  • Hao Dang‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2023‎

Improving clinical management of early stage colorectal cancers (T1CRCs) requires a better understanding of their underlying biology. Accumulating evidence shows that cancer-associated fibroblasts (CAFs) are important determinants of tumor progression in advanced colorectal cancer (CRC), but their role in the initial stages of CRC tumorigenesis is unknown. Therefore, we investigated the contribution of T1CAFs to early CRC progression.


Intertumoral Differences Dictate the Outcome of TGF-β Blockade on the Efficacy of Viro-Immunotherapy.

  • Christianne Groeneveldt‎ et al.
  • Cancer research communications‎
  • 2023‎

The absence of T cells in the tumor microenvironment of solid tumors is a major barrier to cancer immunotherapy efficacy. Oncolytic viruses, including reovirus type 3 Dearing (Reo), can recruit CD8+ T cells to the tumor and thereby enhance the efficacy of immunotherapeutic strategies that depend on high T-cell density, such as CD3-bispecific antibody (bsAb) therapy. TGF-β signaling might represent another barrier to effective Reo&CD3-bsAb therapy due to its immunoinhibitory characteristics. Here, we investigated the effect of TGF-β blockade on the antitumor efficacy of Reo&CD3-bsAb therapy in the preclinical pancreatic KPC3 and colon MC38 tumor models, where TGF-β signaling is active. TGF-β blockade impaired tumor growth in both KPC3 and MC38 tumors. Furthermore, TGF-β blockade did not affect reovirus replication in both models and significantly enhanced the Reo-induced T-cell influx in MC38 colon tumors. Reo administration decreased TGF-β signaling in MC38 tumors but instead increased TGF-β activity in KPC3 tumors, resulting in the accumulation of α-smooth muscle actin (αSMA+) fibroblasts. In KPC3 tumors, TGF-β blockade antagonized the antitumor effect of Reo&CD3-bsAb therapy, even though T-cell influx and activity were not impaired. Moreover, genetic loss of TGF-β signaling in CD8+ T cells had no effect on therapeutic responses. In contrast, TGF-β blockade significantly improved therapeutic efficacy of Reo&CD3-bsAb in mice bearing MC38 colon tumors, resulting in a 100% complete response. Further understanding of the factors that determine this intertumor dichotomy is required before TGF-β inhibition can be exploited as part of viroimmunotherapeutic combination strategies to improve their clinical benefit.


Epithelial argininosuccinate synthetase is dispensable for intestinal regeneration and tumorigenesis.

  • Jonathan H M van der Meer‎ et al.
  • Cell death & disease‎
  • 2021‎

The epithelial signaling pathways involved in damage and regeneration, and neoplastic transformation are known to be similar. We noted upregulation of argininosuccinate synthetase (ASS1) in hyperproliferative intestinal epithelium. Since ASS1 leads to de novo synthesis of arginine, an important amino acid for the growth of intestinal epithelial cells, its upregulation can contribute to epithelial proliferation necessary to be sustained during oncogenic transformation and regeneration. Here we investigated the function of ASS1 in the gut epithelium during tissue regeneration and tumorigenesis, using intestinal epithelial conditional Ass1 knockout mice and organoids, and tissue specimens from colorectal cancer patients. We demonstrate that ASS1 is strongly expressed in the regenerating and Apc-mutated intestinal epithelium. Furthermore, we observe an arrest in amino acid flux of the urea cycle, which leads to an accumulation of intracellular arginine. However, loss of epithelial Ass1 does not lead to a reduction in proliferation or increase in apoptosis in vivo, also in mice fed an arginine-free diet. Epithelial loss of Ass1 seems to be compensated by altered arginine metabolism in other cell types and the liver.


Gastrointestinal cancer-associated fibroblasts expressing Junctional Adhesion Molecule-A are amenable to infection by oncolytic reovirus.

  • Tom J Harryvan‎ et al.
  • Cancer gene therapy‎
  • 2022‎

Gastrointestinal (GI) cancers are characterized by extensive tumor stroma that both promotes tumor progression and acts as a physical barrier for adjacent tumor cells, limiting the effect of current treatment modalities. Oncolytic virotherapy is currently investigated in clinical trials as a novel therapeutic agent for different malignancies of the GI tract, but it is largely unknown whether these viruses can also target the tumor stroma. Here, we investigated the tropism of two commonly studied OVs, adenovirus and reovirus, towards primary GI fibroblasts from human oesophageal, gastric, duodenal and pancreatic carcinomas (N = 36). GI fibroblasts were susceptible to type 3 Dearing (T3D) strain R124 and bioselected mutant reovirus (jin-3) infection but not oncolytic adenovirus (Ad5-Δ24). Efficient infection and apoptosis of human and mouse GI cancer-derived fibroblasts by these reoviruses was partially dependent on the expression of the reovirus entry receptor, Junctional Adhesion Molecule-A (JAM-A). Moreover, human GI cancer organoid-fibroblast co-cultures showed higher overall infectivity when containing JAM-A expressing fibroblasts as compared to JAM-A negative fibroblasts, indicating a potential role of JAM-A expressing fibroblasts for viral dissemination. We further show that JAM-A is not only necessary for efficient reovirus infection of fibroblasts but also partially mediates reovirus-induced apoptosis, dependent on signaling through the C-terminal PDZ-domain of JAM-A. Altogether, our data show the presence of JAM-A expressing fibroblasts in both human and murine GI cancers that are amenable to infection and induction of apoptosis by reovirus, extending the potential anti-cancer actions of reovirus with stromal targeting.


Endoglin and squamous cell carcinomas.

  • Sarah K Hakuno‎ et al.
  • Frontiers in medicine‎
  • 2023‎

Despite the fact that the role of endoglin on endothelial cells has been extensively described, its expression and biological role on (epithelial) cancer cells is still debatable. Especially its function on squamous cell carcinoma (SCC) cells is largely unknown. Therefore, we investigated SCC endoglin expression and function in three types of SCCs; head and neck (HNSCC), esophageal (ESCC) and vulvar (VSCC) cancers. Endoglin expression was evaluated in tumor specimens and 14 patient-derived cell lines. Next to being expressed on angiogenic endothelial cells, endoglin is selectively expressed by individual SCC cells in tumor nests. Patient derived HNSCC, ESCC and VSCC cell lines express varying levels of endoglin with high interpatient variation. To assess the function of endoglin in signaling of TGF-β ligands, endoglin was overexpressed or knocked out or the signaling was blocked using TRC105, an endoglin neutralizing antibody. The endoglin ligand BMP-9 induced strong phosphorylation of SMAD1 independent of expression of the type-I receptor ALK1. Interestingly, we observed that endoglin overexpression leads to strongly increased soluble endoglin levels, which in turn decreases BMP-9 signaling. On the functional level, endoglin, both in a ligand dependent and independent manner, did not influence proliferation or migration of the SCC cells. In conclusion, these data show endoglin expression on individual cells in the tumor nests in SCCs and a role for (soluble) endoglin in paracrine signaling, without directly affecting proliferation or migration in an autocrine manner.


Targeting pancreatic cancer by TAK-981: a SUMOylation inhibitor that activates the immune system and blocks cancer cell cycle progression in a preclinical model.

  • Sumit Kumar‎ et al.
  • Gut‎
  • 2022‎

Pancreatic ductal adenocarcinoma (PDAC) has the characteristics of high-density desmoplastic stroma, a distinctive immunosuppressive microenvironment and is profoundly resistant to all forms of chemotherapy and immunotherapy, leading to a 5-year survival rate of 9%. Our study aims to add novel small molecule therapeutics for the treatment of PDAC.


Fluid shear stress-induced TGF-β/ALK5 signaling in renal epithelial cells is modulated by MEK1/2.

  • Steven J Kunnen‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2017‎

Renal tubular epithelial cells are exposed to mechanical forces due to fluid flow shear stress within the lumen of the nephron. These cells respond by activation of mechano-sensors located at the plasma membrane or the primary cilium, having crucial roles in maintenance of cellular homeostasis and signaling. In this paper, we applied fluid shear stress to study TGF-β signaling in renal epithelial cells with and without expression of the Pkd1-gene, encoding a mechano-sensor mutated in polycystic kidney disease. TGF-β signaling modulates cell proliferation, differentiation, apoptosis, and fibrotic deposition, cellular programs that are altered in renal cystic epithelia. SMAD2/3-mediated signaling was activated by fluid flow, both in wild-type and Pkd1 -/- cells. This was characterized by phosphorylation and nuclear accumulation of p-SMAD2/3, as well as altered expression of downstream target genes and epithelial-to-mesenchymal transition markers. This response was still present after cilia ablation. An inhibitor of upstream type-I-receptors, ALK4/ALK5/ALK7, as well as TGF-β-neutralizing antibodies effectively blocked SMAD2/3 activity. In contrast, an activin-ligand trap was ineffective, indicating that increased autocrine TGF-β signaling is involved. To study potential involvement of MAPK/ERK signaling, cells were treated with a MEK1/2 inhibitor. Surprisingly, fluid flow-induced expression of most SMAD2/3 targets was further enhanced upon MEK inhibition. We conclude that fluid shear stress induces autocrine TGF-β/ALK5-induced target gene expression in renal epithelial cells, which is partially restrained by MEK1/2-mediated signaling.


DUSP10 Is a Regulator of YAP1 Activity Promoting Cell Proliferation and Colorectal Cancer Progression.

  • Marta Jiménez-Martínez‎ et al.
  • Cancers‎
  • 2019‎

Cell contact inhibition (CCI) is deregulated in cancer. Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. We found that dual-specificity phosphatase 10 (DUSP10) is involved in CRC. DUSP10 overexpression increased the growth of CRC cell lines and mouse xenografts, while the opposite phenotype was observed by DUSP10 silencing. High cell density (HD) induced DUSP10 expression in CRC cell lines, particularly within the nucleus. Yes-associated protein 1 (YAP1) is activated by dephosphorylation, controlling organ growth and CCI, both processes being deregulated in CRC. Expression levels and localization of DUSP10 matched with YAP1 levels in CRC cell lines. DUSP10 and YAP1 co-immunoprecipitated and their interaction was dependent on YAP1 Ser397. The existence of DUSP10 and YAP1 pathway in vivo was confirmed by using a transgenic Drosophila model. Finally, in CRC patients' samples, high levels of nuclear DUSP10 correlated with nuclear YAP1 in epithelial tumor tissue. Strong nuclear DUSP10 staining also correlated with high tumor stage and poor survival. Overall, these findings describe a DUSP10-YAP1 molecular link in CRC cell lines promoting cell growth in HD. We present evidence suggesting a pro-tumorigenic role of nuclear DUSP10 expression in CRC patients.


Prostaglandin F2α-induced Prostate Transmembrane Protein, Androgen Induced 1 mediates ovarian cancer progression increasing epithelial plasticity.

  • Alba Jiménez-Segovia‎ et al.
  • Neoplasia (New York, N.Y.)‎
  • 2019‎

The role of prostaglandin (PG) F2α has been scarcely studied in cancer. We have identified a new function for PGF2α in ovarian cancer, stimulating the production of Prostate Transmembrane Protein, Androgen Induced 1 (PMEPA1). We show that this induction increases cell plasticity and proliferation, enhancing tumor growth through PMEPA1. Thus, PMEPA1 overexpression in ovarian carcinoma cells, significantly increased cell proliferation rates, whereas PMEPA1 silencing decreased proliferation. In addition, PMEPA1 overexpression buffered TGFβ signaling, via reduction of SMAD-dependent signaling. PMEPA1 overexpressing cells acquired an epithelial morphology, associated with higher E-cadherin expression levels while β-catenin nuclear translocation was inhibited. Notwithstanding, high PMEPA1 levels also correlated with epithelial to mesenchymal transition markers, such as vimentin and ZEB1, allowing the cells to take advantage of both epithelial and mesenchymal characteristics, gaining in cell plasticity and adaptability. Interestingly, in mouse xenografts, PMEPA1 overexpressing ovarian cells had a clear survival and proliferative advantage, resulting in higher metastatic capacity, while PMEPA1 silencing had the opposite effect. Furthermore, high PMEPA1 expression in a cohort of advanced ovarian cancer patients was observed, correlating with E-cadherin expression. Most importantly, high PMEPA1 mRNA levels were associated with lower patient survival.


Targeting Endoglin Expressing Cells in the Tumor Microenvironment Does Not Inhibit Tumor Growth in a Pancreatic Cancer Mouse Model.

  • Mark J A Schoonderwoerd‎ et al.
  • OncoTargets and therapy‎
  • 2021‎

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal forms of cancer and is known to have low immunogenicity and an immunosuppressive microenvironment. It is also characterized by high accumulation of dense stroma, composed of mostly cancer-associated fibroblasts (CAFs). Multiple subsets of CAFs are described, with one of them expressing the transforming growth factor (TGF)-β co-receptor endoglin. In previous work, we and others have shown that endoglin-expressing CAFs stimulate tumor progression and metastasis. Therefore, in this study, we set out to investigate the role of endoglin-expressing CAFs in pancreatic cancer progression.


Cytokine Mixtures Mimicking the Local Milieu in Patients with Inflammatory Bowel Disease Impact Phenotype and Function of Mesenchymal Stromal Cells.

  • Marieke C Barnhoorn‎ et al.
  • Stem cells translational medicine‎
  • 2022‎

Locally applied mesenchymal stromal cells (MSCs) have the capacity to promote the healing of perianal fistulas in Crohn's disease (CD) and are under clinical development for the treatment of proctitis in ulcerative colitis (UC). Despite these clinical advances, the mechanism of action of local MSC therapy in inflammatory bowel disease (IBD) is largely unknown. We hypothesized that the local cytokine environment in IBD patients affects the immunomodulatory properties of MSCs. To evaluate this, 11 cytokines were analyzed in inflamed tissues obtained from CD and UC patients. Based on the identified cytokine profiles 4 distinct cytokine mixtures that mimic various inflammatory IBD environments were established. Next, MSCs were cultured in the presence of either of these 4 cytokine mixtures after which the expression of immunomodulatory and tissue regenerative molecules and the capacity of MSCs to modulate T-cell proliferation and dendritic cell (DC) differentiation were assessed. Our data show that MSCs respond, in a cytokine-specific manner, by upregulation of immunomodulatory and tissue regenerative molecules, including cyclooxygenase-2, indoleamine 2,3-dioxygenase, and transforming growth factor-β1. Functional studies indicate that MSCs exposed to a cytokine profile mimicking one of the 2 UC cytokine milieus were less effective in inhibition of DC differentiation. In conclusion, our data indicate that cytokine mixes mimicking the local cytokine milieus of inflamed UC colonic or CD fistulas tissues can differentially affect the immunomodulatory and tissue regenerative characteristics of MSCs. These data support the hypothesis that the local intestinal cytokine milieu serves as a critical factor in the efficacy of local MSC treatment.


IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis.

  • Seth B Coffelt‎ et al.
  • Nature‎
  • 2015‎

Metastatic disease remains the primary cause of death for patients with breast cancer. The different steps of the metastatic cascade rely on reciprocal interactions between cancer cells and their microenvironment. Within this local microenvironment and in distant organs, immune cells and their mediators are known to facilitate metastasis formation. However, the precise contribution of tumour-induced systemic inflammation to metastasis and the mechanisms regulating systemic inflammation are poorly understood. Here we show that tumours maximize their chance of metastasizing by evoking a systemic inflammatory cascade in mouse models of spontaneous breast cancer metastasis. We mechanistically demonstrate that interleukin (IL)-1β elicits IL-17 expression from gamma delta (γδ) T cells, resulting in systemic, granulocyte colony-stimulating factor (G-CSF)-dependent expansion and polarization of neutrophils in mice bearing mammary tumours. Tumour-induced neutrophils acquire the ability to suppress cytotoxic T lymphocytes carrying the CD8 antigen, which limit the establishment of metastases. Neutralization of IL-17 or G-CSF and absence of γδ T cells prevents neutrophil accumulation and downregulates the T-cell-suppressive phenotype of neutrophils. Moreover, the absence of γδ T cells or neutrophils profoundly reduces pulmonary and lymph node metastases without influencing primary tumour progression. Our data indicate that targeting this novel cancer-cell-initiated domino effect within the immune system--the γδ T cell/IL-17/neutrophil axis--represents a new strategy to inhibit metastatic disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: