Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 118 papers

Evidence for the additions of clustered interacting nodes during the evolution of protein interaction networks from network motifs.

  • Zhongyang Liu‎ et al.
  • BMC evolutionary biology‎
  • 2011‎

High-throughput screens have revealed large-scale protein interaction networks defining most cellular functions. How the proteins were added to the protein interaction network during its growth is a basic and important issue. Network motifs represent the simplest building blocks of cellular machines and are of biological significance.


Molecular cloning, characterization and expression analysis of the protein arginine N-methyltransferase 1 gene (As-PRMT1) from Artemia sinica.

  • Xue Jiang‎ et al.
  • Gene‎
  • 2015‎

Protein arginine N-methyltransferase 1 (PRMT1) is an important epigenetic regulation factor in eukaryotic genomes. PRMT1 is involved in histone arginine loci methylation modification, changes in eukaryotic genomes' chromatin structure, and gene expression regulation. In the present paper, the full-length 1201-bp cDNA sequence of the PRMT1 homolog of Artemia sinica (As-PRMT1) was cloned for the first time. The putative As-PRMT1 protein comprises 346 amino acids with a SAM domain and a PRMT5 domain. Multiple sequence alignments revealed that the putative sequence of As-PRMT1 protein was relatively conserved across species, especially in the SAM domain. As-PRMT1 is widely expressed during embryo development of A. sinica. This is followed by a dramatic upregulation after diapause termination and then downregulation from the nauplius stage. Furthermore, As-PRMT1 transcripts are highly upregulated under conditions of high salinity and low temperature stress. These findings suggested that As-PRMT1 is a stress-related factor that might promote or inhibit the expression of certain genes, play a critical role in embryonic development and in resistance to low temperature and high salinity stress.


A penalized linear mixed model for genomic prediction using pedigree structures.

  • Can Yang‎ et al.
  • BMC proceedings‎
  • 2014‎

Genetic Analysis Workshop 18 provided a platform for evaluating genomic prediction power based on single-nucleotide polymorphisms from single-nucleotide polymorphism array data and sequencing data. Also, Genetic Analysis Workshop 18 provided a diverse pedigree structure to be explored in prediction. In this study, we attempted to combine pedigree information with single-nucleotide polymorphism data to predict systolic blood pressure. Our results suggested that the prediction power based on pedigree information only could be unsatisfactory. Using additional information such as single-nucleotide polymorphism genotypes would improve prediction accuracy. In particular, the improvement can be significant when there exist a few single-nucleotide polymorphisms with relatively larger effect sizes. We also compared the prediction performance based on genome-wide association study data (ie, common variants) and sequencing data (ie, common variants plus low-frequency variants). The experimental result showed that inclusion of low frequency variants could not lead to improvement of prediction accuracy.


Identification of rare variants for hypertension with incorporation of linkage information.

  • Yen-Feng Chiu‎ et al.
  • BMC proceedings‎
  • 2014‎

We conducted linkage analysis using the genome-wide association study data on chromosome 3, and then assessed association between hypertension and rare variants of genes located in the regions showing evidence of linkage. The rare variants were collapsed if their minor allele frequencies were less than or equal to the thresholds: 0.01, 0.03, or 0.05. In the collapsing process, they were either unweighted or weighted by the nonparametric linkage log of odds scores in 2 different schemes: exponential weighting and cumulative weighting. Logistic regression models using the generalized estimating equations approach were used to assess association between the collapsed rare variants and hypertension adjusting for age and gender. Evidence of association from the weighted and unweighted collapsing schemes with minor allele frequencies ≤0.01, after accounting for multiple testing, was found for genes DOCK3 (p = 0.0090), ARMC8 (p = 1.29E-5), KCNAB1 (p = 5.8E-4), and MYRIP (p = 5.79E-6). DOCK3 and MYRIP are newly discovered. Incorporating linkage scores as weights was found to help identify rare causal variants with a large effect size.


APC/CCDC20 and APC/C play pivotal roles in the process of embryonic development in Artemia sinica.

  • Mengchen Zhang‎ et al.
  • Scientific reports‎
  • 2016‎

Anaphase Promoting Complex or Cyclosome (APC/C) is a representative E3 ubiquitin ligase, triggering the transition of metaphase to anaphase by regulating degradation and ensures the exit from mitosis. Cell division cycle 20 (CDC20) and Cell division cycle 20 related protein 1 (CDH1), as co-activators of APC/C, play significant roles in the spindle assembly checkpoint, guiding ubiquitin-mediated degradation, together with CDC23. During the embryonic development of the brine shrimp, Artemia sinica, CDC20, CDH1 and CDC23 participate in cell cycle regulation, but the specific mechanisms of their activities remain unknown. Herein, the full-length cDNAs of cdc20 and cdc23 from A. sinica were cloned. Real-time PCR analyzed the expression levels of As-cdc20 and As-cdc23. The locations of CDH1, CDC20 and CDC23 showed no tissue or organ specificity. Furthermore, western blotting showed that the levels of As-CDC20, securin, cyclin B, CDK1, CDH1, CDC14B, CDC23 and geminin proteins conformed to their complicated degradation relationships during different embryo stages. Our research revealed that As-CDC20, As-CDH1 and APC mediate the mitotic progression, downstream proteins degradation and cellular differentiation in the process of embryonic development in A. sinica.


A review of post-GWAS prioritization approaches.

  • Lin Hou‎ et al.
  • Frontiers in genetics‎
  • 2013‎

In the recent decade, high-throughput genotyping and next-generation sequencing platforms have enabled genome-wide association studies (GWAS) of many complex human diseases. These studies have discovered many disease susceptible loci, and unveiled unexpected disease mechanisms. Despite these successes, these identified variants only explain a small proportion of the genetic contributions to these diseases and many more remain to be found. This is largely due to the small effect sizes of most disease-associated variants and limited sample size. As a result, it is critical to leverage other information to more effectively prioritize GWAS signals to increase replication rates and better understand disease mechanisms. In this review, we introduce the biological/genomic features that have been found to be informative for post-GWAS prioritization, and discuss available tools to utilize these features for prioritization.


Estrogen receptor α-coupled Bmi1 regulation pathway in breast cancer and its clinical implications.

  • Huali Wang‎ et al.
  • BMC cancer‎
  • 2014‎

Bmi1 has been identified as an important regulator in breast cancer, but its relationship with other signaling molecules such as ERα and HER2 is undetermined.


Cloning and expression of the sorbitol dehydrogenase gene during embryonic development and temperature stress in Artemia sinica.

  • Ting Wang‎ et al.
  • Gene‎
  • 2013‎

Sorbitol dehydrogenase (SDH) catalyzes the interconversion of polyols and ketoses, using zinc and NAD(+) as cofactors. SDH converts sorbitol into fructose and plays an important role in the sorbitol metabolic pathway and in the early embryonic development of many invertebrates. Sorbitol usually accumulates in diapause embryos of insects to protect the embryos from frostbite, which indicates the vital function of SDH in the diapause and diapause-termination stages of embryo development. In this study, a 1311-bp full-length cDNA of As-sdh, including a 28-bp 5' UTR and a 59-bp 3' UTR, was cloned from Artemia sinica. This gene encodes 348 amino-acid proteins. Bioinformatic analysis revealed that this gene is highly conserved in arthropods. The expression patterns of As-sdh were investigated during different stages of embryonic development using real-time PCR and in situ hybridization. As-sdh was expressed at relatively high levels during the 0h embryonic stage, and transcript levels were quite high in 5- and 7-day-old embryos. In situ hybridization analysis showed that As-sdh is expressed in a widely dispersed pattern before incubation but is mainly concentrated on the body surface and the inner wall of the alimentary tract after the nauplius stage. Our results suggest that As-sdh is integral to the process of diapause and diapause termination in A. sinica.


Cloning and expression of retinoblastoma-binding protein 4 gene in embryo diapause termination and in response to salinity stress from brine shrimp Artemia sinica.

  • Xiaolu Wang‎ et al.
  • Gene‎
  • 2016‎

Retinoblastoma binding protein 4 (RBBP4) is a nuclear protein with four WD-repeat sequences and thus belongs to a highly conserved subfamily of proteins with such domains. This retinoblastoma-binding protein plays an important role in nucleosome assembly and histone modification, which influences gene transcription and regulates cell cycle and proliferation. Artemia sinica (brine shrimp) undergoes an unusual diapause process under stress conditions of high salinity and low temperature. However, the role of RBBP4 in diapause termination of embryo development in A. sinica remains unknown. Here, the full-length cDNA of the As-rbbp4 gene was obtained from A. sinica and found to contain 1411 nucleotides, including a 1281 bp open reading frame (ORF), 63 bp 5'-untranslated region (UTR) and a 67-bp 3'-UTR, which encodes a 427 amino acid (48 kDa) protein. Bioinformatic analysis indicated As-RBBP4 to be mainly located in the nucleus, with a theoretical isoelectric point of 4.79. Protein sequence domain analysis showed that As-RBBP4 is a conserved protein, especially in the WD40 domain. No specificity in expression of this gene was observed in tissues or organs by in situ hybridization. Real-time quantitative PCR and Western blot analyses of As-RBBP4 gene and protein expression, respectively, showed notably high levels at 10 h and a subsequent downward trend. Obvious trends in upregulation of As-RBBP4 were observed under conditions of low temperature and high salinity stress. As-E2F1 and As-CyclinE also presented similar trends as that of As-RBBP4 in Western blots. Analysis of the RBBP4 expression in early embryonic development of A. sinica indicated that this protein plays an important role in diapause termination and cell cycle regulation.


The Potential Roles of the G1LEA and G3LEA Proteins in Early Embryo Development and in Response to Low Temperature and High Salinity in Artemia sinica.

  • Wei Zhao‎ et al.
  • PloS one‎
  • 2016‎

Late embryogenesis abundant proteins (LEA) are stress resistance-related proteins that play crucial roles in protecting against desiccation, cold and high salinity in a variety of animals and plants. However, the expression pattern, distribution and functions of LEA proteins in the post-diapause period of Artemia sinica, and under high salinity and low temperature stresses, remain unknown. In this study, the complete cDNA sequences of the group 1 LEA (As-g1lea) and group 3 LEA (As-g3lea) genes from A. sinica were cloned. The expression patterns and location of As-G1LEA and As-G1LEA were investigated. The protein abundances of As-G1LEA, As-G3LEA and Trehalase were analyzed during different developmental stages of the embryo and under low temperature and high salinity stresses in A. sinica. The full-length cDNA of As-g1lea was 960 bp, encoding a 182 amino acid protein, and As-g3lea was 2089 bp, encoding a 364 amino acid protein. As-g1lea and As-g3lea showed their highest expressions at 0 h of embryonic development and both showed higher relative expression in embryonic, rather than adult, development stages. The abundances of As-G1LEA, As-G3LEA and trehalose were upregulated under low temperature and downregulated under high salinity stress. These two genes did not show any tissue or organ specific expression. Our results suggested that these LEA proteins might play a pivotal role in stress tolerance in A. sinica.


Anticancer properties and mechanisms of fucoidan on mouse breast cancer in vitro and in vivo.

  • Meilan Xue‎ et al.
  • PloS one‎
  • 2012‎

Fucoidan is a sulfated polysaccharide derived from brown algae that has been reported to perform multiple biological activities, including antitumor activity. In this study, we examined the influence of crude fucoidan on mouse breast cancer in vitro and in vivo.


Integrating phosphorylation network with transcriptional network reveals novel functional relationships.

  • Lin Wang‎ et al.
  • PloS one‎
  • 2012‎

Phosphorylation and transcriptional regulation events are critical for cells to transmit and respond to signals. In spite of its importance, systems-level strategies that couple these two networks have yet to be presented. Here we introduce a novel approach that integrates the physical and functional aspects of phosphorylation network together with the transcription network in S.cerevisiae, and demonstrate that different network motifs are involved in these networks, which should be considered in interpreting and integrating large scale datasets. Based on this understanding, we introduce a HeRS score (hetero-regulatory similarity score) to systematically characterize the functional relevance of kinase/phosphatase involvement with transcription factor, and present an algorithm that predicts hetero-regulatory modules. When extended to signaling network, this approach confirmed the structure and cross talk of MAPK pathways, inferred a novel functional transcription factor Sok2 in high osmolarity glycerol pathway, and explained the mechanism of reduced mating efficiency upon Fus3 deletion. This strategy is applicable to other organisms as large-scale datasets become available, providing a means to identify the functional relationships between kinases/phosphatases and transcription factors.


Gene transfer of Chlorella vulgaris n-3 fatty acid desaturase optimizes the fatty acid composition of human breast cancer cells.

  • Meilan Xue‎ et al.
  • Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas‎
  • 2012‎

Chlorella vulgaris has the gene of n-3 fatty acid desaturase (CvFad3), which can synthesize the precursor of n-3 polyunsaturated fatty acids (PUFAs) or convert n-6 to n-3 PUFAs. The objective of the present study was to examine whether the CvFad3 gene from C. vulgaris can be functionally and efficiently expressed in human breast cancer cells and whether its expression can exert a significant effect on cell fatty acid composition. We inserted the CvFad3 gene into the plasmid pEGFP-C3 to construct the eukaryotic expression vector pEGFP-C3-n-3 and to express the n-3 Fad gene in human breast cancer cells (MCF-7 cells). Transfection of MCF-7 cells with the recombinant vector resulted in a high expression of n-3 fatty acid desaturase. Lipid analysis indicated that the ratio of n-6/n-3 PUFAs was decreased from 6:1 in the control cells to about 1:1 in the cells expressing the n-3 fatty acid desaturase. Accordingly, the CvFad3 gene significantly decreased the ratio of n-6/n-3 PUFAs of the MCF-7 cell membrane. The expression of the CvFad3 gene can decrease cell proliferation and promote cell apoptosis. This study demonstrates that the CvFad3 gene can dramatically balance the ratio of n-6/n-3 PUFAs and may provide an effective approach to the modification of the fatty acid composition of mammalian cells, also providing a basis for potential applications of its transfer in experimental and clinical settings.


A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p.

  • Mengyang Li‎ et al.
  • Theranostics‎
  • 2018‎

Non-coding RNAs (ncRNAs) are considered major players in physiological and pathological processes based on their versatile regulatory roles in different diseases including cardiovascular disease. Circular RNAs (circRNAs), a newly discovered class of RNAs, constitute a substantial fraction of the mammalian transcriptome and are abundantly expressed in the cardiovascular system. However, the regulatory functions of these circRNAs in ischemic cardiac disease remain largely unknown. Here, we investigated the role of a circRNA transcribed from the sodium/calcium exchanger 1 (ncx1) gene, named circNCX1, in oxidative stress-induced cardiomyocyte apoptosis during ischemic myocardial injury. Methods: Divergent polymerase chain reaction (PCR) was conducted to amplify the circRNA. The circular structure of circNCX1 was verified by Sanger sequencing and RNase R digestion. The subcellular localization of circNCX1 was detected by fluorescence in situ hybridization (FISH). To test the expression pattern and function of circNCX1 during oxidative stress, H9c2 cells and neonatal rat cardiomyocytes were treated with H2O2 or hypoxia-reoxygenation (H/R). Mechanistically, the interaction of circNCX1 with miRNA was examined by AGO2-IP and RNA pull-down assays. The regulatory role of circNCX1 in target gene expression was tested by western blot and luciferase reporter assays. At the animal level, we constructed a myocardial ischemia-reperfusion (I/R) mouse model to analyze the effect of circNCX1 on heart function, cardiomyocyte apoptosis and cardiac remodeling. Results: circNCX1 was increased in response to reactive oxygen species (ROS) and promotes cardiomyocyte apoptosis by acting as an endogenous miR-133a-3p sponge. Due to competitive binding of circNCX1 to miR-133a-3p, the suppressive activity of pro-apoptotic gene cell death-inducing protein (CDIP1) by miR-133a-3p was reduced. Knockdown of circNCX1 in murine cardiomyocytes and heart tissues reduced the levels of CDIP1 and attenuated the apoptosis and I/R injury. Conclusions: Our findings reveal a novel regulatory pathway that comprises circNCX1, miR-133a-3p and CDIP1, that is involved in cardiomyocyte apoptosis. This pathway may serve as a potential therapeutic avenue for ischemic heart diseases.


How long should the fully hillside-closed forest protection be implemented on the Loess Plateau, Shaanxi, China?

  • Lin Hou‎ et al.
  • PeerJ‎
  • 2017‎

Restoration of degraded forest ecosystem is crucial for regional sustainable development. To protect the country's fragile and fragmented environment, the Chinese government initiated an ecological engineering project, the Natural Forest Protection Program, in seventeen provinces in China beginning in 1998. Fully hillside-closed forest protection (vegetation restoration naturally without any artificial disturbance) was one of vital measures of the Natural Forest Protection Program applied nation wide. Whether plant diversity, biomass and age structure of dominant tree species and soil nutrients in protected stands may become better with increase of protected period are still open problems.


Shikonin differentially regulates glucose metabolism via PKM2 and HIF1α to overcome apoptosis in a refractory HCC cell line.

  • Wei Yang‎ et al.
  • Life sciences‎
  • 2021‎

In tumor cells, shikonin treatment has been reported to inhibit glycolysis by suppressing the activity of pyruvate kinase M2 (PKM2) and to induce apoptosis by increasing reactive oxygen species (ROS) production. However, hepatocellular carcinoma (HCC) shows variable sensitivity to shikonin treatment, and the mechanism for these differences remains unclear. We evaluated the effects of shikonin on metabolic and oxidative pathways in sensitive and refractory HCC cell lines to identify mechanisms of differential sensitivity.


Single-dose in situ storage for intensifying anticancer efficacy via combinatorial strategy.

  • Lin Hou‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2020‎

Metronomic cancer chemotherapy has displayed the potential to ameliorate immunosuppressive tumor microenvironment (TME) and facilitate antitumor immunotherapy, but this strategy requires uninterrupted administration of low-dose chemotherapeutic agents and suffers from rapid drug clearance. Here, we developed a single-dose in situ immune stimulator storage to achieve prolonged retention and sustained release of drugs in tumor parenchyma. Importantly, this storage could initiate immune responses through photothermal therapy (PTT) and simultaneously remodel TME. In detail, the storage framework (NGOPC) with size of ~60 nm, was composed of Ala-Ala-Asn-Cys-Lys modified nano graphene oxide (NGO-PEG-pep) and 2-cyano-6-aminobenzothiazole modified NGO (NGO-PEG-CABT), and could sufficiently penetrate into deep tumor region. Once NGOPC arrived at the core field, legumain overexpressing in TME could trigger click cycloaddition reaction of NGO-PEG-pep with NGO-PEG-CABT to form network, leading to aggregation and augmented retention in tumor. Additionally, paclitaxel (PTX) that can block immunologic escape was loaded in NGOPC (NGOPC@PTX), which synergistically worked with PTT-generated antitumor immunity. We found that NGOPC@PTX possessed the superior ability to accumulate in tumor and generate antitumor immunological efficacy by improving immune factors: induction of HSP70-mediated immunogenic cell death, reduction of regulatory T cells, and activation of cytotoxic T lymphocyte. This in situ storage, which exhibited excellent tumor growth inhibition effect and prolonged lifespan in combination with PTT, displays the potential for intensified cancer immunotherapy.


The Potential Roles of the Apoptosis-Related Protein PDRG1 in Diapause Embryo Restarting of Artemia sinica.

  • Wan Zhang‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

High salinity and low temperatures can induce Artemia sinica to enter the diapause stage during embryonic development. Diapause embryos stop at the gastrula stage, allowing them to resist apoptosis and regulate cell cycle activity to guarantee normal development after diapause termination. P53 and DNA damage-regulated gene 1 (pdrg1) is involved in cellular physiological activities, such as apoptosis, DNA damage repair, cell cycle regulation, and promotion of programmed cell death. However, the role of pdrg1 in diapause and diapause termination in A. sinica remains unknown. Here, the full-length A. sinica pdrg1 cDNA (As-pdrg1) was obtained and found to contain 1119 nucleotides, including a 228 bp open reading frame (ORF), a 233 bp 5'-untranslated region (UTR), and a 658-bp 3'-UTR, which encodes a 75 amino acid protein. In situ hybridization showed no tissue specific expression of As-pdrg1. Quantitative real-time PCR and western blotting analyses of As-pdrg1 gene and protein expression showed high levels at 15-20 h of embryo development and a subsequent downward trend. Low temperatures upregulated As-pdrg1 expression. RNA interference for the pdrg1 gene in Artemia embryos caused significant developmental hysteresis. Thus, PDRG1 plays an important role in diapause termination and cell cycle regulation in early embryonic development of A. sinica.


Openness weighted association studies: leveraging personal genome information to prioritize non-coding variants.

  • Shuang Song‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2021‎

Identification and interpretation of non-coding variations that affect disease risk remain a paramount challenge in genome-wide association studies (GWAS) of complex diseases. Experimental efforts have provided comprehensive annotations of functional elements in the human genome. On the other hand, advances in computational biology, especially machine learning approaches, have facilitated accurate predictions of cell-type-specific functional annotations. Integrating functional annotations with GWAS signals has advanced the understanding of disease mechanisms. In previous studies, functional annotations were treated as static of a genomic region, ignoring potential functional differences imposed by different genotypes across individuals.


The Added Value of Combined Timed Up and Go Test, Walking Speed, and Grip Strength on Predicting Recurrent Falls in Chinese Community-dwelling Elderly.

  • Lu Wang‎ et al.
  • Clinical interventions in aging‎
  • 2021‎

To determine whether combined performance-based models could exert better predictive values toward discriminating community-dwelling elderly with high risk of any-falls or recurrent-falls.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: