Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 190 papers

A new MCM modification cycle regulates DNA replication initiation.

  • Lei Wei‎ et al.
  • Nature structural & molecular biology‎
  • 2016‎

The MCM DNA helicase is a central regulatory target during genome replication. MCM is kept inactive during G1, and it initiates replication after being activated in S phase. During this transition, the only known chemical change to MCM is the gain of multisite phosphorylation that promotes cofactor recruitment. Because replication initiation is intimately linked to multiple biological cues, additional changes to MCM can provide further regulatory points. Here, we describe a yeast MCM SUMOylation cycle that regulates replication. MCM subunits undergo SUMOylation upon loading at origins in G1 before MCM phosphorylation. MCM SUMOylation levels then decline as MCM phosphorylation levels rise, thus suggesting an inhibitory role of MCM SUMOylation during replication. Indeed, increasing MCM SUMOylation impairs replication initiation, partly through promoting the recruitment of a phosphatase that decreases MCM phosphorylation and activation. We propose that MCM SUMOylation counterbalances kinase-based regulation, thus ensuring accurate control of replication initiation.


Identification of α1-Antitrypsin as a Potential Candidate for Internal Control for Human Synovial Fluid in Western Blot.

  • Shaowei Wang‎ et al.
  • Rheumatology (Sunnyvale, Calif.)‎
  • 2015‎

Western blot of synovial fluid has been widely used for osteoarthritis (OA) research and diagnosis, but there is no ideal loading control for this purpose. Although β-actin is extensively used as loading control in western blot, it is not suitable for synovial fluid because it is not required in synovial fluid as a cytoskeletal protein. A good loading control for synovial fluid in OA studies should have unchanged content in synovial fluids from normal and OA groups, because synovial fluid protein content can vary with changes in synovial vascular permeability with OA onset. In this study, we explore the potential of using α1-antitripsin (A1AT) as loading control for OA synovial fluid in western blot. A1AT level is elevated in inflammatory conditions such as rheumatoid arthritis (RA). Unlike RA, OA is a non-inflammation disease, which does not induce A1AT. In this study, we identified A1AT as an abundant component of synovial fluid by Mass Spectrometry and confirmed that the level of A1AT is relative constant between human OA and normal synovial fluid by western blot and ELISA. Hence, we proposed that A1AT may be a good loading control for western blot in human OA synovial fluid studies provided that pathological conditions such as RA or A1AT deficiency associated liver or lung diseases are excluded.


Harnessing 3D models of mammary epithelial morphogenesis: An off the beaten path approach to identify candidate biomarkers of early stage breast cancer.

  • Stefano Rossetti‎ et al.
  • Cancer letters‎
  • 2016‎

Regardless of the etiological factor, an aberrant morphology is the common hallmark of ductal carcinoma in situ (DCIS), which is a highly heterogeneous disease. To test if critical core morphogenetic mechanisms are compromised by different mutations, we performed proteomics analysis of five mammary epithelial HME1 mutant lines that develop a DCIS-like morphology in three dimensional (3D) culture. Here we show first, that all HME1 mutant lines share a common protein signature highlighting an inverse deregulation of two annexins, ANXA2 and ANXA8. Either ANXA2 downregulation or ANXA8 upregulation in the HME1 cell context are per se sufficient to confer a 3D DCIS-like morphology. Seemingly, different mutations impinged on a common mechanism that differentially regulates the two annexins. Second, we show that ANXA8 expression is significantly higher in DCIS tissue samples versus normal breast tissue and atypical ductal hyperplasia (ADH). Apparently, ANXA8 expression is significantly more upregulated in ER-negative versus ER-positive cases, and significantly correlates with tumor stage, grade and positive lymph node. Based on our study, 3D mammary morphogenesis models can be an alternate/complementary strategy for unraveling new DCIS mechanisms and biomarkers.


The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias.

  • Anna K Andersson‎ et al.
  • Nature genetics‎
  • 2015‎

Infant acute lymphoblastic leukemia (ALL) with MLL rearrangements (MLL-R) represents a distinct leukemia with a poor prognosis. To define its mutational landscape, we performed whole-genome, exome, RNA and targeted DNA sequencing on 65 infants (47 MLL-R and 18 non-MLL-R cases) and 20 older children (MLL-R cases) with leukemia. Our data show that infant MLL-R ALL has one of the lowest frequencies of somatic mutations of any sequenced cancer, with the predominant leukemic clone carrying a mean of 1.3 non-silent mutations. Despite this paucity of mutations, we detected activating mutations in kinase-PI3K-RAS signaling pathway components in 47% of cases. Surprisingly, these mutations were often subclonal and were frequently lost at relapse. In contrast to infant cases, MLL-R leukemia in older children had more somatic mutations (mean of 6.5 mutations/case versus 1.3 mutations/case, P = 7.15 × 10(-5)) and had frequent mutations (45%) in epigenetic regulators, a category of genes that, with the exception of MLL, was rarely mutated in infant MLL-R ALL.


Chlorotoxin targets ERα/VASP signaling pathway to combat breast cancer.

  • Ying Wang‎ et al.
  • Cancer medicine‎
  • 2019‎

Breast cancer is one of the most common malignant tumors among women worldwide. About 70-75% of primary breast cancers belong to estrogen receptor (ER)-positive breast cancer. In the development of ER-positive breast cancer, abnormal activation of the ERα pathway plays an important role and is also a key point leading to the failure of clinical endocrine therapy. In this study, we found that the small molecule peptide chlorotoxin (CTX) can significantly inhibit the proliferation, migration and invasion of breast cancer cells. In in vitro study, CTX inhibits the expression of ERα in breast cancer cells. Further studies showed that CTX can directly bind to ERα and change the protein secondary structure of its LBD domain, thereby inhibiting the ERα signaling pathway. In addition, we also found that vasodilator stimulated phosphoprotein (VASP) is a target gene of ERα signaling pathway, and CTX can inhibit breast cancer cell proliferation, migration, and invasion through ERα/VASP signaling pathway. In in vivo study, CTX significantly inhibits growth of ER overexpressing breast tumor and, more importantly, based on the mechanism of CTX interacting with ERα, we found that CTX can target ER overexpressing breast tumors in vivo. Our study reveals a new mechanism of CTX anti-ER-positive breast cancer, which also provides an important reference for the study of CTX anti-ER-related tumors.


Stimulator of Interferon Genes Promotes Host Resistance Against Pseudomonas aeruginosa Keratitis.

  • Kang Chen‎ et al.
  • Frontiers in immunology‎
  • 2018‎

Pseudomonas aeruginosa (PA) is the leading cause of bacterial keratitis, especially in those who wear contact lens and who are immunocompromised. Once the invading pathogens are recognized by pattern recognition receptors expressed on the innate immune cells, the innate immune response is stimulated to exert host defense function, which is the first line to fight against PA infection. As a converging point of cytosolic DNA sense signaling, stimulator of interferon genes (STING) was reported to participate in host-pathogen interaction. However, the role of STING in regulating PA-induced corneal inflammation and bacterial clearance remains unknown. Our data demonstrated that STING was activated in murine model of PA keratitis and in in vitro-cultured macrophages, indicated by Western blot, immunostaining, and flow cytometry. To explore the role of STING in PA keratitis, we used siRNA to silence STING and 2',3'-cGAMP to activate STING in vivo and in vitro, and the in vivo data found out that STING promoted host resistance against PA infection. To investigate the reason why STING played a protective role in PA keratitis, the inflammatory cytokine secretion and bacterial load were measured by using real-time PCR and bacterial plate count, respectively. Our data demonstrated that STING suppressed the production of inflammatory cytokines and enhanced bacterial elimination in murine model of PA keratitis and in PA-infected macrophages. To further investigate the mechanism beneath, the phosphorylation of mitogen-activated protein kinase, the nuclear translocation of nuclear factor-κB (NF-κB) and the bactericidal mechanism were measured by western-blot, immunofluorescence, and real-time PCR, respectively. Our data indicated that STING suppressed inflammatory cytokine expressing via restraining NF-κB activity and enhanced inducible NO synthase expression, an oxygen-dependent bactericidal mechanism. In conclusion, this study demonstrated that STING promoted host resistance against PA keratitis and played a protective role in PA-infected corneal disease, via inhibiting corneal inflammation and enhancing bacterial killing.


Development of Colloidal Gold-Based Immunochromatographic Assay for Rapid Detection of Goose Parvovirus.

  • Xianglong Yu‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Goose parvovirus (GPV) remains as a worldwide problem in goose industry. For this reason, it is necessary to develop a new diagnostic approach that is easier and faster than conventional tests. A rapid immunochromatographic assay based on antibody colloidal gold nanoparticles specific to GPV was developed for the detection of GPV in goose allantoic fluid and supernatant of tissue homogenate. The monoclonal antibodies (Mab) was produced by immunizing the BALB/c mice with purified GPV suspension, and the polyclonal antibody (pAb) was produced by immunizing the rabbits with recombinant VP3 protein. The colloidal gold was prepared by the reduction of gold salt with sodium citrate coupled with Mab against GPV. The optimal concentrations of the coating antibody and capture antibody were determined to be 1.6 mg/ml and 9 μg/ml. With visual observation, the lower limit was found to be around 1.2 μg/ml. Common diseases of goose were tested to evaluate the specificity of the immune colloidal gold (ICG) strip, and no cross-reaction was observed. The clinical detection was examined by carrying out the ICG strip test with 92 samples and comparing the results of these tests with those obtained via agar diffusion test and polymerase chain reaction (PCR) test. Therefore, the ICG strip test was a sufficiently sensitive and accurate detection method for a rapid screening of GPV.


FGF2 and FGFR2 in patients with idiopathic pulmonary fibrosis and lung cancer.

  • Li Li‎ et al.
  • Oncology letters‎
  • 2018‎

The aim of this study was to investigate the expression of FGF2 and FGFR2 in patients with idiopathic pulmonary fibrosis (IPF) and lung cancer (LC) as well as their clinical significance. Reverse transcription-quantitative PCR (RT-qPCR) and western blotting were used to detect FGF2 and FGFR2 expression in LC and adjacent normal tissues of LC patients and lavage fluid of idiopathic pulmonary fibers patients and normal controls (confirmed by bronchoalveolar lavage examination). The expression levels of FGF2 mRNA and protein in the non-small cell LC tissues were significantly higher than those in the adjacent normal tissues (P<0.001). The expression level of FGF2 protein in lavage fluid of patients with IPF was higher than that of the control group (P<0.001). The expression level of FGFR2 mRNA in the non-small cell LC tissues was significantly higher than that in the adjacent normal tissues (P<0.001). The expression level of FGFR2 protein in the non-small cell LC tissues was higher than that in the adjacent normal lung tissues (P<0.001). The expression levels of FGF2 mRNA and FGFR2 mRNA in cancer tissues were not significantly correlated with age, sex and history of smoking (P>0.05), but were significantly correlated with lymph node metastasis, tumor differentiation and TNM staging. FGF2 and FGFR2 proteins were highly expressed in cancer tissues of LC patients and lavage fluid of patients with IPF. The expression of FGF2 mRNA and FGFR2 mRNA was correlated with lymph node metastasis and TNM stage. The high expression levels of FGF2 mRNA and FGFR2 mRNA were associated with tumor metastasis and poor prognosis of LC patients.


Prevalence and Genetic Diversity of Enterococcus faecalis Isolates from Mineral Water and Spring Water in China.

  • Lei Wei‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Enterococcus faecalis is an important opportunistic pathogen which is frequently detected in mineral water and spring water for human consumption and causes human urinary tract infections, endocarditis and neonatal sepsis. The aim of this study was to determine the prevalence, virulence genes, antimicrobial resistance and genetic diversity of E. faecalis from mineral water and spring water in China. Of 314 water samples collected from January 2013 to January 2014, 48 samples (15.3%) were contaminated E. faecalis. The highest contamination rate occurred in activated carbon filtered water of spring water (34.5%), followed by source water of spring water (32.3%) and source water of mineral water (6.4%). The virulence gene test of 58 E. faecalis isolates showed that the detection rates of asa1, ace, cylA, gelE and hyl were 79.3, 39.7, 0, 100, 0%, respectively. All 58 E. faecalis isolates were not resistant to 12 kinds of antibiotics (penicillin, ampicillin, linezolid, quinupristin/dalfopristin, vancomycin, gentamicin, streptomycin, ciprofloxacin, levofloxacin, norfloxacin, nitrofurantoin, and tetracycline). Enterobacterial repetitive intergenic consensus-PCR classified 58 isolates and three reference strains into nine clusters with a similarity of 75%. This study is the first to investigate the prevalence of E. faecalis in mineral water and spring water in China. The results of this study suggested that spring water could be potential vehicles for transmission of E. faecalis.


CSCD: a database for cancer-specific circular RNAs.

  • Siyu Xia‎ et al.
  • Nucleic acids research‎
  • 2018‎

Circular RNA (circRNA) is a large group of RNA family extensively existed in cells and tissues. High-throughput sequencing provides a way to view circRNAs across different samples, especially in various diseases. However, there is still no comprehensive database for exploring the cancer-specific circRNAs. We collected 228 total RNA or polyA(-) RNA-seq samples from both cancer and normal cell lines, and identified 272 152 cancer-specific circRNAs. A total of 950 962 circRNAs were identified in normal samples only, and 170 909 circRNAs were identified in both tumor and normal samples, which could be further used as non-tumor background. We constructed a cancer-specific circRNA database (CSCD, http://gb.whu.edu.cn/CSCD). To understand the functional effects of circRNAs, we predicted the microRNA response element sites and RNA binding protein sites for each circRNA. We further predicted potential open reading frames to highlight translatable circRNAs. To understand the association between the linear splicing and the back-splicing, we also predicted the splicing events in linear transcripts of each circRNA. As the first comprehensive cancer-specific circRNA database, we believe CSCD could significantly contribute to the research for the function and regulation of cancer-associated circRNAs.


A Preliminary Study on the Pattern, the Physiological Bases and the Molecular Mechanism of the Adductor Muscle Scar Pigmentation in Pacific Oyster Crassostrea gigas.

  • Wenchao Yu‎ et al.
  • Frontiers in physiology‎
  • 2017‎

The melanin pigmentation of the adductor muscle scar and the outer surface of the shell are among attractive features and their pigmentation patterns and mechanism still remains unknown in the Pacific oyster Crassostrea gigas. To study these pigmentation patterns, the colors of the adductor muscle scar vs. the outer surface of the shell on the same side were compared. No relevance was found between the colors of the adductor muscle scars and the corresponding outer surface of the shells, suggesting that their pigmentation processes were independent. Interestingly, a relationship between the color of the adductor muscle scars and the dried soft-body weight of Pacific oysters was found, which could be explained by the high hydroxyl free radical scavenging capacity of the muscle attached to the black adductor muscle scar. After the transcriptomes of pigmented and unpigmented adductor muscles and mantles were studied by RNAseq and compared, it was found that the retinol metabolism pathway were likely to be involved in melanin deposition on the adductor muscle scar and the outer surface of the shell, and that the different members of the tyrosinase or Cytochrome P450 gene families could play a role in the independent pigmentation of different organs.


Analytical variables influencing the performance of a miRNA based laboratory assay for prediction of relapse in stage I non-small cell lung cancer (NSCLC).

  • Jesper Dahlgaard‎ et al.
  • BMC research notes‎
  • 2011‎

Laboratory assays are needed for early stage non-small lung cancer (NSCLC) that can link molecular and clinical heterogeneity to predict relapse after surgical resection. We technically validated two miRNA assays for prediction of relapse in NSCLC. Total RNA from seventy-five formalin-fixed and paraffin-embedded (FFPE) specimens was extracted, labeled and hybridized to Affymetrix miRNA arrays using different RNA input amounts, ATP-mix dilutions, array lots and RNA extraction- and labeling methods in a total of 166 hybridizations. Two combinations of RNA extraction- and labeling methods (assays I and II) were applied to a cohort of 68 early stage NSCLC patients.


CXCR4/SDF1 mediate hypoxia induced chondrosarcoma cell invasion through ERK signaling and increased MMP1 expression.

  • Xiaojuan Sun‎ et al.
  • Molecular cancer‎
  • 2010‎

Chondrosarcoma is a disease that does not respond to conventional cytotoxic chemotherapy and expression of MMP1 is a marker for a poor prognosis. The mechanism of increased MMP1 expression in chondrosarcoma is not completely known. Our goal is to identify molecular pathways that could serve as therapeutic targets. Chondrosarcoma become hypoxic as they grow, are capable of eliciting an angiogenic response, and typically metastasize to the lungs. The present study determined the effect of hypoxia and specifically HIF-1a on expression of CXCR4 and MMP1 and their role in chondrosarcoma cell invasion.


A novel therapeutic strategy for cartilage diseases based on lipid nanoparticle-RNAi delivery system.

  • Shaowei Wang‎ et al.
  • International journal of nanomedicine‎
  • 2018‎

Cartilage degeneration affects millions of people but preventing its degeneration is a big challenge. Although RNA interference (RNAi) has been used in human trials via silencing specific genes, the cartilage RNAi has not been possible to date because the cartilage is an avascular and very dense tissue with very low permeability.


Prognostic value of histone chaperone FACT subunits expression in breast cancer.

  • Kristopher Attwood‎ et al.
  • Breast cancer (Dove Medical Press)‎
  • 2017‎

Understanding the underlying reasons for tumor aggressiveness, such as why some tumors grow slowly and locally, while others rapidly progress to a lethal metastatic disease, is still limited. This is especially critical in breast cancer (BrCa) due to its high prevalence and also due to the possibility that it can be detected early. Several oncogenes and tumor suppressors have been identified and are used in the prognosis and treatment of BrCa. However, even with these markers, the outcome within BrCa subtypes is highly variable. Chromatin organization has long been acknowledged as a factor that plays an important role in tumor progression, but molecular mechanisms defining chromatin dynamics are largely missing. We have recently found that histone chaperone FACT (facilitates chromatin transcription) is overexpressed in ~18-20% of BrCa cases. FACT is elevated upon transformation of mammary epithelial cells and is essential for viability of tumor cells. BrCa cells with high FACT have a more aggressive transcriptional program than those with low FACT cells. Based on this we propose that FACT may be a marker of aggressive BrCa. In this study, we aimed to comprehensively characterize the pattern of FACT expression in BrCa in relation to other molecular and clinical prognostic markers. We developed and tested an assay for the detection and quantitation of protein levels of both FACT subunits, SSRP1, and SPT16, in clinical samples. We compared the value of mRNA and protein as potential markers of disease aggressiveness using a large cohort of patients (n=1092). We demonstrated that only SSRP1 immunohistochemical staining is a reliable indicator of FACT levels in tumor samples. High SSRP1 correlated with known markers of poor prognosis, such as negative hormone receptor status, presence of Her2, high-grade tumors, and tumors of later clinical stage. At the same time, no strong correlation between SSRP1 expression and survival was detected when all samples were analyzed together. Clear trend toward longer survival of patients with low or no SSRP1 expression in tumor samples was seen in several subgroups of patients, and most importantly significant association of high SSRP1 expression with shorter disease-free survival was detected in patients with early-stage and low-grade BrCa, the category of patients with the highest demand in predictive marker of disease progression.


Brain controllability and morphometry similarity of internet gaming addiction.

  • Lei Wei‎ et al.
  • Methods (San Diego, Calif.)‎
  • 2021‎

Internet gaming addiction (IGD) is a common disease in teenagers which usually reflects the abnormalities in brain function or structure. Several computational models have been applied to investigate the characteristic of IGD brain networks, for instance, the conception of brain controllability. The primary objective of this study was to explore the relationship between brain controllability and IGD related clinical behaviour. A sample of 101 subjects, including 49 IGD patients and 52 normal controls, were recruited to undergo MR T1 and DTI scanning. Specifically, the MR images were used to generate the white matter connectivity matrix and the morphometry similarity network. The morphometry similarity network was then divided into several communities using modular decomposition. After, average controllability, modal controllability and synchronizability were calculated through measuring the adjacency matrix. The results indicated that the IGD group had greater synchronizability and modal controllability compared to that of the control group, and different morphological-based brain communities had different controllability properties. Furthermore, the addiction demonstrated the mediating effects between nodal or modular brain controllability as well as anxiety. In conclusion, brain controllability could be a potential biomarker of IGD.


Dynamic transcriptome profiling in DNA damage-induced cellular senescence and transient cell-cycle arrest.

  • Zhen Zhao‎ et al.
  • Genomics‎
  • 2020‎

Cellular senescence is an irreversible cell cycle arrest process associated with aging and senescence-related diseases. DNA damage is an extensive feature of cellular senescence and aging. Different levels of DNA damage could lead to cellular senescence or transient cell-cycle arrest, but the genetic regulatory mechanisms determining cell fate are still not clear. In this work, high-resolution time course analysis of gene expression in DNA damage-induced cellular senescence and transient cell-cycle arrest was used to explore the transcriptomic differences between different cell fates after DNA damage response and to investigate the key regulatory factors affecting senescent cell fates. Pathways such as the cell cycle, DNA repair and cholesterol metabolism showed characteristic differential response. A number of key transcription factors were predicted to regulating cell cycle and DNA repair. Our study provides genome-wide insights into the molecular-level mechanisms of senescent cell fate decisions after DNA damage response.


Anti-fibrotic effect of melittin on TRIM47 expression in human embryonic lung fibroblast through regulating TRIM47 pathway.

  • Li Li‎ et al.
  • Life sciences‎
  • 2020‎

To investigate the effect and underlying mechanism of melittin and tripartite motif (TRIM) family in human embryonic lung fibroblast (HELF).


In silico and in vitro protocols for quantifying gene expression noise modulated by microRNAs.

  • Lei Wei‎ et al.
  • STAR protocols‎
  • 2022‎

Characterizing the noise modulation pattern of microRNA is valuable for both microRNA function analysis and synthetic biology applications. Here we propose a coarse-grained model to simulate how the properties of microRNAs, competing RNAs, and microRNA response elements affect gene expression noise. We also detail an experimental protocol based on synthetic gene circuits and flow cytometry to quantify the noise. This framework is easy-to-use for the study and application of both microRNA and gene expression noise. For complete details on the use and execution of this protocol, please refer to Wei et al. (2021).


Integrated Analysis of the CircRNA-Based ceRNA Network in Renal Fibrosis Induced by Ischemia Reperfusion Injury.

  • Lei Wei‎ et al.
  • Frontiers in genetics‎
  • 2021‎

Background: Circular RNAs (circRNAs), which have broad posttranscriptional regulatory potencies, are involved in the pathogenesis of fibrotic diseases and are promising diagnostic biomarkers and therapeutic targets. However, their specific roles in renal fibrosis remain elusive. Methods: A robust unilateral renal ischemia reperfusion injury (UIRI) mouse model was established to recapitulate the pathophysiology of renal fibrosis. The expression of circRNAs, miRNAs, and mRNAs was profiled by high-throughput RNA sequencing technology. Results: In total, 4983 circRNAs, 216 miRNAs, and 6371 mRNAs were differentially expressed in UIRI-induced fibrotic kidneys. Candidate circRNAs and miRNAs were validated by RT-qPCR in both UIRI and unilateral ureteral obstruction mouse models. Bioinformatic analysis indicated that the parental genes of the differentially expressed circRNAs were predominantly implicated in focal adhesion, adhesion junctions, and regulation of actin cytoskeleton pathways. Through circRNA-miRNA-mRNA construction, we identified two hub genes, circSlc8a1 and circApoe, that targeted a large number of differentially expressed miRNAs and mRNAs related to metabolism and cytokine-cytokine receptor pathways, respectively. Conclusion: CircRNAs were dysregulated in the UIRI model and might be potentially involved in the pathogenesis of renal fibrosis. Research efforts should focus on unravelling the functions of aberrantly expressed circRNAs in renal fibrosis to uncover biomarkers that would enable early diagnosis and the design of prompt therapeutic interventions to prevent disease progression.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: