Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

TEAD4 antagonizes cellular senescence by remodeling chromatin accessibility at enhancer regions.

  • Donghui Zhang‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2023‎

Dramatic alterations in epigenetic landscapes are known to impact genome accessibility and transcription. Extensive evidence demonstrates that senescent cells undergo significant changes in chromatin structure; however, the mechanisms underlying the crosstalk between epigenetic parameters and gene expression profiles have not been fully elucidated. In the present study, we delineate the genome-wide redistribution of accessible chromatin regions that lead to broad transcriptome effects during senescence. We report that distinct senescence-activated accessibility regions (SAAs) are always distributed in H3K27ac-occupied enhancer regions, where they are responsible for elevated flanking senescence-associated secretory phenotype (SASP) expression and aberrant cellular signaling relevant to SASP secretion. Mechanistically, a single transcription factor, TEAD4, moves away from H3K27ac-labled SAAs to allow for prominent chromatin accessibility reconstruction during senescence. The enhanced SAAs signal driven by TEAD4 suppression subsequently induces a robust increase in the expression of adjacent SASP genes and the secretion of downstream factors, which contribute to the progression of senescence. Our findings illustrate a dynamic landscape of chromatin accessibility following senescence entry, and further reveal an insightful function for TEAD4 in regulating the broad chromatin state that modulates the overall transcriptional program of SASP genes.


Recruitment of transcription factor ETS1 to activated accessible regions promotes the transcriptional program of cilia genes.

  • Donghui Zhang‎ et al.
  • Nucleic acids research‎
  • 2023‎

Defects in cilia genes, which are critical for cilia formation and function, can cause complicated ciliopathy syndromes involving multiple organs and tissues; however, the underlying regulatory mechanisms of the networks of cilia genes in ciliopathies remain enigmatic. Herein, we have uncovered the genome-wide redistribution of accessible chromatin regions and extensive alterations of expression of cilia genes during Ellis-van Creveld syndrome (EVC) ciliopathy pathogenesis. Mechanistically, the distinct EVC ciliopathy-activated accessible regions (CAAs) are shown to positively regulate robust changes in flanking cilia genes, which are a key requirement for cilia transcription in response to developmental signals. Moreover, a single transcription factor, ETS1, can be recruited to CAAs, leading to prominent chromatin accessibility reconstruction in EVC ciliopathy patients. In zebrafish, the collapse of CAAs driven by ets1 suppression subsequently causes defective cilia proteins, resulting in body curvature and pericardial oedema. Our results depict a dynamic landscape of chromatin accessibility in EVC ciliopathy patients, and uncover an insightful role for ETS1 in controlling the global transcriptional program of cilia genes by reprogramming the widespread chromatin state.


Senescence-activated enhancer landscape orchestrates the senescence-associated secretory phenotype in murine fibroblasts.

  • Yiting Guan‎ et al.
  • Nucleic acids research‎
  • 2020‎

The three-dimensional configuration of the chromatin architecture is known to be crucial for alterations in the transcriptional network; however, the underlying mechanisms of epigenetic control of senescence-related gene expression by modulating the chromatin architecture remain unknown. Here, we demonstrate frequent chromosomal compartment switching during mouse embryonic fibroblasts (MEFs) replicative senescence as characterized by senescence-inactivated (SIAEs) and -activated enhancers (SAEs) in topologically associated domains (TADs). Mechanistically, SAEs are closely correlated with senescence-associated secretory phenotype (SASP) genes, which are a key transcriptional feature of an aging microenvironment that contributes to tumor progression, aging acceleration, and immunoinflammatory responses. Moreover, SAEs can positively regulate robust changes in SASP expression. The transcription factor CCAAT/enhancer binding protein α (C/EBPα) is capable of enhancing SAE activity, which accelerates the emergence of SAEs flanking SASPs and the secretion of downstream factors, contributing to the progression of senescence. Our results provide novel insight into the TAD-related control of SASP gene expression by revealing hierarchical roles of the chromatin architecture, transcription factors, and enhancer activity in the regulation of cellular senescence.


The chromatin remodeling factor CSB recruits histone acetyltransferase PCAF to rRNA gene promoters in active state for transcription initiation.

  • Meili Shen‎ et al.
  • PloS one‎
  • 2013‎

The promoters of poised rRNA genes (rDNA) are marked by both euchromatic and heterochromatic histone modifications and are associated with two transcription factors, UBF and SL1 that nucleate transcription complex formation. Active rRNA genes contain only euchromatic histone modifications and are loaded with all components of transcriptional initiation complex including RNA polymerase I. Coupled with histone acetylation and RNA polymerase I targeting, poised promoters can be converted to active ones by ATP-dependent chromatin remodeling factor CSB for initiation of rDNA transcription. However, it is not clear how dynamic histone modifications induce the assembly of polymerase I transcription initiation complex to active promoters during such conversion. Here we show that a complex consisting of CSB, RNA polymerase I and histone acetyltransferase PCAF is present at the rDNA promoters in active state. CSB is required for the association of PCAF with rDNA, which induces acetylation of histone H4 and histone H3K9. Overexpression of CSB promotes the association of PCAF with rDNA. Knockdown of PCAF leads to decreased levels of H4ac and H3K9ac at rDNA promoters, prevents the association of RNA polymerase I and inhibits pre-rRNA synthesis. The results demonstrate that CSB recruits PCAF to rDNA, which allows histone acetylation that is required for the assembly of polymerase I transcription initiation complex during the transition from poised to active state of rRNA genes, suggesting that CSB and PCAF play cooperative roles to establish the active state of rRNA genes by histone acetylation.


Gene body methylation safeguards ribosomal DNA transcription by preventing PHF6-mediated enrichment of repressive histone mark H4K20me3.

  • Xiaoke Huang‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

DNA methylation shows complex correlations with gene expression, and the role of promoter hypermethylation in repressing gene transcription has been well addressed. Emerging evidence indicates that gene body methylation promotes transcription; however, the underlying mechanisms remain to be further investigated. Here, using methylated DNA immunoprecipitation sequencing (MeDIP-seq), bisulfite genomic sequencing, and immunofluorescent labeling, we show that gene body methylation is indeed positively correlated with rRNA gene (rDNA) transcription. Mechanistically, gene body methylation is largely maintained by DNA methyltransferase 1 (DNMT1), deficiency or downregulation of which during myoblast differentiation or nutrient deprivation results in decreased gene body methylation levels, leading to increased gene body occupancy of plant homeodomain (PHD) finger protein 6 (PHF6). PHF6 binds to hypomethylated rDNA gene bodies where it recruits histone methyltransferase SUV4-20H2 to establish the repressive histone modification, H4K20me3, ultimately inhibiting rDNA transcription. These findings demonstrate that DNMT1-mediated gene body methylation safeguards rDNA transcription by preventing enrichment of repressive histone modifications, suggesting that gene body methylation serves to maintain gene expression in response to developmental and/or environmental stresses.


NAD+ augmentation with nicotinamide riboside improves lymphoid potential of Atm-/- and old mice HSCs.

  • Le Zong‎ et al.
  • NPJ aging and mechanisms of disease‎
  • 2021‎

NAD+ supplementation has significant benefits in compromised settings, acting largely through improved mitochondrial function and DNA repair. Elevating NAD+ to physiological levels has been shown to improve the function of some adult stem cells, with implications that these changes will lead to sustained improvement of the tissue or system. Here, we examined the effect of elevating NAD+ levels in models with reduced hematopoietic stem cell (HSC) potential, ATM-deficient and aged WT mice, and showed that supplementation of nicotinamide riboside (NR), a NAD+ precursor, improved lymphoid lineage potential during supplementation. In aged mice, this improved lymphoid potential was maintained in competitive transplants and was associated with transcriptional repression of myeloid gene signatures in stem and lineage-committed progenitor cells after NR treatment. However, the altered transcriptional priming of the stem cells toward lymphoid lineages was not sustained in the aged mice after NR removal. These data characterize significant alterations to the lineage potential of functionally compromised HSCs after short-term exposure to NR treatment.


TGF-β signaling alters H4K20me3 status via miR-29 and contributes to cellular senescence and cardiac aging.

  • Guoliang Lyu‎ et al.
  • Nature communications‎
  • 2018‎

Cellular senescence is a well-orchestrated programmed process involved in age-related pathologies, tumor suppression and embryonic development. TGF-β/Smad is one of the predominant pathways that regulate damage-induced and developmentally programmed senescence. Here we show that canonical TGF-β signaling promotes senescence via miR-29-induced loss of H4K20me3. Mechanistically, oxidative stress triggers TGF-β signaling. Activated TGF-β signaling gives rise to acute accumulation of miR-29a and miR-29c, both of which directly suppress their novel target, Suv4-20h, thus reducing H4K20me3 abundance in a Smad-dependent manner, which compromises DNA damage repair and genome maintenance. Loss of H4K20me3 mediated by the senescent TGF-β/miR-29 pathway contributes to cardiac aging in vivo. Disruption of TGF-β signaling restores H4K20me3 and improves cardiac function in aged mice. Our study highlights the sequential mechanisms underlying the regulation of senescence, from senescence-inducing triggers to activation of responsive signaling followed by specific epigenetic alterations, shedding light on potential therapeutic interventions in cardiac aging.


ATF3 drives senescence by reconstructing accessible chromatin profiles.

  • Chao Zhang‎ et al.
  • Aging cell‎
  • 2021‎

Chromatin organization and transcriptional profiles undergo tremendous reordering during senescence. However, uncovering the regulatory mechanisms between chromatin reconstruction and gene expression in senescence has been elusive. Here, we depicted the landscapes of both chromatin accessibility and gene expression to reveal gene regulatory networks in human umbilical vein endothelial cell (HUVEC) senescence and found that chromatin accessibilities are redistributed during senescence. Particularly, the intergenic chromatin was massively shifted with the increased accessibility regions (IARs) or decreased accessibility regions (DARs), which were mainly enhancer elements. We defined AP-1 transcription factor family as being responsible for driving chromatin accessibility reconstruction in IARs, where low DNA methylation improved binding affinity of AP-1 and further increased the chromatin accessibility. Among AP-1 transcription factors, we confirmed ATF3 was critical to reconstruct chromatin accessibility to promote cellular senescence. Our results described a dynamic landscape of chromatin accessibility whose remodeling contributes to the senescence program, we identified that AP-1 was capable of reorganizing the chromatin accessibility profile to regulate senescence.


Cancer co-opts differentiation of B-cell precursors into macrophage-like cells.

  • Chen Chen‎ et al.
  • Nature communications‎
  • 2022‎

We have recently reported that some cancers induce accumulation of bone marrow (BM) B-cell precursors in the spleen to convert them into metastasis-promoting, immunosuppressive B cells. Here, using various murine tumor models and samples from humans with breast and ovarian cancers, we provide evidence that cancers also co-opt differentiation of these B-cell precursors to generate macrophage-like cells (termed B-MF). We link the transdifferentiation to a small subset of CSF1R+ Pax5Low cells within BM pre-B and immature B cells responding to cancer-secreted M-CSF with downregulation of the transcription factor Pax5 via CSF1R signaling. Although the primary source of tumor-associated macrophages is monocytes, B-MFs are phenotypically and functionally distinguishable. Compared to monocyte-derived macrophages, B-MFs more efficiently phagocytize apoptotic cells, suppress proliferation of T cells and induce FoxP3+ regulatory T cells. In mouse tumor models, B-MFs promote shrinkage of the tumor-infiltrating IFNγ+ CD4 T cell pool and increase cancer progression and metastasis, suggesting that this cancer-induced transdifferentiation pathway is functionally relevant and hence could serve as an immunotherapeutic target.


The Morphological Transformation of the Thorax during the Eclosion of Drosophila melanogaster (Diptera: Drosophilidae).

  • Si-Pei Liu‎ et al.
  • Insects‎
  • 2023‎

The model organism Drosophila melanogaster, as a species of Holometabola, undergoes a series of transformations during metamorphosis. To deeply understand its development, it is crucial to study its anatomy during the key developmental stages. We describe the anatomical systems of the thorax, including the endoskeleton, musculature, nervous ganglion, and digestive system, from the late pupal stage to the adult stage, based on micro-CT and 3D visualizations. The development of the endoskeleton causes original and insertional changes in muscles. Several muscles change their shape during development in a non-uniform manner with respect to both absolute and relative size; some become longer and broader, while others shorten and become narrower. Muscular shape may vary during development. The number of muscular bundles also increases or decreases. Growing muscles are probably anchored by the tissues in the stroma. Some muscles and tendons are absent in the adult stage, possibly due to the hardened sclerites. Nearly all flight muscles are present by the third day of the pupal stage, which may be due to the presence of more myofibers with enough mitochondria to support flight power. There are sexual differences in the same developmental period. In contrast to the endodermal digestive system, the functions of most thoracic muscles change in the development from the larva to the adult in order to support more complex locomotion under the control of a more structured ventral nerve cord based on the serial homology proposed herein.


Genome and epigenome analysis of monozygotic twins discordant for congenital heart disease.

  • Guoliang Lyu‎ et al.
  • BMC genomics‎
  • 2018‎

Congenital heart disease (CHD) is the leading non-infectious cause of death in infants. Monozygotic (MZ) twins share nearly all of their genetic variants before and after birth. Nevertheless, MZ twins are sometimes discordant for common complex diseases. The goal of this study is to identify genomic and epigenomic differences between a pair of twins discordant for a form of congenital heart disease, double outlet right ventricle (DORV).


Tristetraprolin overexpression drives hematopoietic changes in young and middle-aged mice generating dominant mitigating effects on induced inflammation in murine models.

  • Mayuri Tanaka-Yano‎ et al.
  • GeroScience‎
  • 2024‎

Tristetraprolin (TTP), encoded by Zfp36 in mice, is one of the best-characterized tandem zinc-finger mRNA binding proteins involved in mRNA deadenylation and decay. TTPΔARE mice lack an AU-rich motif in the 3'-untranslated regions of TTP mRNA, leading to increased TTP mRNA stability and more TTP protein, resulting in elevated mRNA decay rates of TTP targets. We examined the effect of TTP overexpression on the hematopoietic system in both young and middle-aged mice using TTPΔARE mice and found alterations in blood cell frequencies, with loss of platelets and B220 cells and gains of eosinophils and T cells. TTPΔARE mice also have skewed primitive populations in the bone marrow, with increases in myeloid-biased hematopoietic stem cells (HSCs) but decreases in granulocyte/macrophage-biased multipotent progenitors (MPP3) in both young and middle-aged mice. Changes in the primitive cells' frequencies were associated with transcriptional alterations in the TTP overexpression cells specific to age as well as cell type. Regardless of age, there was a consistent elevation of transcripts regulated by TNFα and TGFβ signaling pathways in both the stem and multipotent progenitor populations. HSCs with TTP overexpression had decreased reconstitution potential in murine transplants but generated hematopoietic environments that mitigated the inflammatory response to the collagen antibody-induced arthritis (CAIA) challenge, which models rheumatoid arthritis and other autoimmune disorders. This dampening of the inflammatory response was even present when there was only a small frequency of TTP overexpressing cells present in the middle-aged mice. We provide an analysis of the early hematopoietic compartments with elevated TTP expression in both young and middle-aged mice which inhibits the reconstitution potential of the HSCs but generates a hematopoietic system that provides dominant repression of induced inflammation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: