Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The chromatin remodeling factor CSB recruits histone acetyltransferase PCAF to rRNA gene promoters in active state for transcription initiation.

PloS one | 2013

The promoters of poised rRNA genes (rDNA) are marked by both euchromatic and heterochromatic histone modifications and are associated with two transcription factors, UBF and SL1 that nucleate transcription complex formation. Active rRNA genes contain only euchromatic histone modifications and are loaded with all components of transcriptional initiation complex including RNA polymerase I. Coupled with histone acetylation and RNA polymerase I targeting, poised promoters can be converted to active ones by ATP-dependent chromatin remodeling factor CSB for initiation of rDNA transcription. However, it is not clear how dynamic histone modifications induce the assembly of polymerase I transcription initiation complex to active promoters during such conversion. Here we show that a complex consisting of CSB, RNA polymerase I and histone acetyltransferase PCAF is present at the rDNA promoters in active state. CSB is required for the association of PCAF with rDNA, which induces acetylation of histone H4 and histone H3K9. Overexpression of CSB promotes the association of PCAF with rDNA. Knockdown of PCAF leads to decreased levels of H4ac and H3K9ac at rDNA promoters, prevents the association of RNA polymerase I and inhibits pre-rRNA synthesis. The results demonstrate that CSB recruits PCAF to rDNA, which allows histone acetylation that is required for the assembly of polymerase I transcription initiation complex during the transition from poised to active state of rRNA genes, suggesting that CSB and PCAF play cooperative roles to establish the active state of rRNA genes by histone acetylation.

Pubmed ID: 23667505 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


U2OS (tool)

RRID:CVCL_0042

Cell line U2OS is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

NIH 3T3 (tool)

RRID:CVCL_0594

Cell line NIH 3T3 is a Spontaneously immortalized cell line with a species of origin Mus musculus

View all literature mentions

HEK293T (tool)

RRID:CVCL_0063

Cell line HEK293T is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions