Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Biological and clinical significance of flap endonuclease‑1 in triple‑negative breast cancer: Support of metastasis and a poor prognosis.

  • Lu Xu‎ et al.
  • Oncology reports‎
  • 2020‎

Flap endonuclease‑1 (FEN1), a structure‑specific nuclease participating in DNA replication and repair processes, has been confirmed to promote the proliferation and drug resistance of tumor cells. However, the biological functions of FEN1 in cancer cell migration and invasion have not been defined. In the present study, using online database analysis and immunohistochemistry of the specimens, it was found that FEN1 expression was associated with a highly invasive triple‑negative breast cancer (TNBC) subtype in both breast cancer samples from the Oncomine database and from patients recruited into the study. Furthermore, FEN1 was an important biomarker of lymph node metastasis and poor prognosis in patients with TNBC. FEN1 promoted migration of TNBC cell lines and FEN1 knockdown reduced the number of spontaneous lung metastasis in vivo. Ingenuity Pathway Analysis of FEN1‑related transcripts in 198 patients with TNBC demonstrated that the polo‑like kinase family may be the downstream target of FEN1. PLK4 was further identified as a critical target of FEN1 mediating TNBC cell migration, by regulating actin cytoskeleton rearrangement. The results of the present study validate FEN1 as a therapeutic target in patients with TNBC and revealed a new role for FEN1 in regulating TNBC invasion and metastasis.


Bcl-2 overexpression reduces cisplatin cytotoxicity by decreasing ER-mitochondrial Ca2+ signaling in SKOV3 cells.

  • Lu Xu‎ et al.
  • Oncology reports‎
  • 2018‎

Recent studies have revealed that a small amount of cisplatin can penetrate into the nucleus and induce intranuclear DNA damage. Specifically, most cisplatin accumulates in and stresses different organelles, including mitochondria, endoplasmic reticulum (ER) and the cytosol, where apoptosis signaling is activated and magnified. Bcl-2, which is mainly localized to ER and mitochondria, is identified as a key regulator of survival and apoptosis. Bcl-2 is reported to block cisplatin-induced apoptosis via regulating Ca2+ signaling in a variety of cancer cell lines. However, its target molecule and the mechanism responsible for its inhibitory effect in ovarian cancer are undefined. The present study revealed that Bcl-2 overexpression reduced cisplatin-induced growth inhibition and apoptosis in SKOV3 human ovarian cancer cells. Furthermore, Bcl-2 inhibited cisplatin-induced Ca2+ release from the ER to the cytoplasm and mitochondria, which reduced cisplatin-induced ER stress-mediated apoptosis through the mitochondrial apoptotic pathway. The overexpression of Bcl-2 inhibited the cisplatin-induced increase in the number of ER-mitochondrial contact sites in SKOV3 human ovarian cancer cells. In addition, the present study provided evidence that Bcl-2 reduced the anticancer activity of cisplatin towards ovarian cancer cells in vivo. These results revealed that Bcl-2 attenuates cisplatin cytotoxicity via downregulating ER-mitochondrial Ca2+ signaling transduction. Thus, Bcl-2 which may be a potential therapeutic target for ovarian cancer.


Gambogenic acid inhibits the proliferation of small‑cell lung cancer cells by arresting the cell cycle and inducing apoptosis.

  • Tingting Huang‎ et al.
  • Oncology reports‎
  • 2019‎

Gambogenic acid (GNA), which is an important active compound present in gamboge, exerts anticancer activity in various types of tumor cells. However, the effect of GNA on small‑cell lung cancer (SCLC) cell lines and the underlying mechanism involved still remain unclear. In the present study, GNA inhibited the proliferation and cell cycle progression of SCLC cells. GNA also promoted the apoptosis of SCLC cells in a dose‑dependent manner, which is associated with modulating the levels of proteins involved in apoptosis pathways in NCI‑H446 and NCI‑H1688 cells. The results demonstrated that GNA increased the level of cleaved caspase‑3, ‑8 and ‑9, and Bax but decreased the expression of anti‑apoptotic protein, Bcl‑2. Furthermore, similar results were obtained in a mouse tumor xenograft model. Additionally, GNA exhibit low toxicity in tissues when administered to mice in the SCLC xenograft models. Collectively, our findings demonstrated that GNA significantly inhibited the proliferation of SCLC cells and promoted cell apoptosis via cell cycle arrest and induction of apoptosis.


Caveolin‑1 enhances RANKL‑induced gastric cancer cell migration.

  • Yan Wang‎ et al.
  • Oncology reports‎
  • 2018‎

The classical pathway involving receptor activator of nuclear factor‑κB (RANK) and its ligand (RANKL) induces the activation of osteoclasts and the migration of a variety of tumor cells, including breast and lung cancer. In our previous study, the expression of RANK was identified on the surface of gastric cancer cells, however, whether the RANKL/RANK pathway is involved in the regulation of gastric cancer cell migration remains to be fully elucidated. Lipid rafts represent a major platform for the regulation of cancer signaling; however, their involvement in RANKL‑induced migration remains to be elucidated. To investigate the potential roles and mechanism of RANKL/RANK in gastric cancer migration and metastasis, the present study examined the expression of RANK by western blot analysis and the expression of caveolin‑1 (Cav‑1) in gastric cancer tissues by immunohistochemistry, in addition to cell migration which is measured by Transwell migration assay. The aggregation of lipid reft was observed by fluorescence microscopy and western blotting was used to measure signaling changes in associated pathways. The results showed that RANKL induced gastric cancer cell migration, accompanied by the activation of Cav‑1 and aggregation of lipid rafts. Nystatin, a lipid raft inhibitor, inhibited the activation of Cav‑1 and markedly reversed RANKL‑induced gastric cancer cell migration. The RANKL‑induced activation of Cav‑1 has been shown to occur with the activation of proto‑oncogene tyrosine‑protein kinase Src (c‑Src). The c‑Src inhibitor, PP2, inhibited the activation of Cav‑1 and lipid raft aggregation, and reversed RANKL‑induced gastric cancer cell migration. Furthermore, it was demonstrated that Cav‑1 was involved in RANKL‑induced cell migration in lung, renal and breast cancer cells. These results suggested that RANKL induced gastric cancer cell migration, likely through mechanisms involving the c‑Src/Cav‑1 pathway and lipid raft aggregation.


BMH-21 inhibits viability and induces apoptosis by p53-dependent nucleolar stress responses in SKOV3 ovarian cancer cells.

  • Xinxu Fu‎ et al.
  • Oncology reports‎
  • 2017‎

The nucleolus is a stress sensor associated with cell cycle progression and apoptosis. Studies have shown that nucleolar stress is positively correlated with apoptosis in breast, prostate and lung cancer cells. However, the role and function of nucleolar stress in ovarian cancer has not been reported. In this study, we found that the nucleolar stress inducer BMH-21 inhibited viability of SKOV3 ovarian cancer cells in a dose-dependent manner. Furthermore, BMH-21 induced the expression of nucleolar stress marker proteins (nucleolin, nucleophosmin and fibrillarin) and promoted the nuclear export of these proteins. BMH-21 also decreased MDM2 proto-oncogene expression and increased protein levels of the tumor suppressor p53 and p53 phosphorylated at serine 15 (p‑p53‑Ser15), which contributed to increased expression of the downstream apoptosis-related protein BCL2 associated X (BAX) and activation of caspase-3. Taken together, these data provide the first reported evidence that induction of p53-dependent nucleolar stress by BMH-21 induces apoptosis in ovarian cancer. Our data suggest that nucleolar stress might be a pathway suitable for targeting in ovarian cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: