Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 77 papers

A rhythm landscape approach to the developmental dynamics of birdsong.

  • Kazutoshi Sasahara‎ et al.
  • Journal of the Royal Society, Interface‎
  • 2015‎

Unlike simple biological rhythms, the rhythm of the oscine bird song is a learned time series of diverse sounds that change dynamically during vocal ontogeny. How to quantify rhythm development is one of the most important challenges in behavioural biology. Here, we propose a simple method, called 'rhythm landscape', to visualize and quantify how rhythm structure, which is measured as durational patterns of sounds and silences, emerges and changes over development. Applying this method to the development of Bengalese finch songs, we show that the rhythm structure begins with a broadband rhythm that develops into diverse rhythms largely through branching from precursors. Furthermore, an information-theoretic measure, the Jensen-Shannon divergence, was used to characterize the crystallization process of birdsong rhythm, which started with a high rate of rhythm change and progressed to a stage of slow refinement. This simple method provides a useful description of rhythm development, thereby helping to reveal key temporal constraints on complex biological rhythms.


Developmental social environment imprints female preference for male song in mice.

  • Akari Asaba‎ et al.
  • PloS one‎
  • 2014‎

Sexual imprinting is important for kin recognition and for promoting outbreeding, and has been a driving force for evolution; however, little is known about sexual imprinting by auditory cues in mammals. Male mice emit song-like ultrasonic vocalizations that possess strain-specific characteristics.


Production of Sry knockout mouse using TALEN via oocyte injection.

  • Tomoko Kato‎ et al.
  • Scientific reports‎
  • 2013‎

Recently developed transcription activator-like effector nuclease (TALEN) technology has enabled the creation of knockout mice, even for genes on the Y chromosome. In this study, we generated a knockout mouse for Sry, a sex-determining gene on the Y chromosome, using microinjection of TALEN RNA into pronuclear stage oocytes. As expected, the knockout mouse had female external and internal genitalia, a female level of blood testosterone and a female sexually dimorphic nucleus in the brain. The knockout mouse exhibited an estrous cycle and performed copulatory behavior as females, although it was infertile or had reduced fertility. A histological analysis showed that the ovary of the knockout mouse displayed a reduced number of oocytes and luteinized unruptured follicles, implying that a reduced number of ovulated oocytes is a possible reason for infertility and/or reduced fertility in the KO mouse.


Nrp2 is sufficient to instruct circuit formation of mitral-cells to mediate odour-induced attractive social responses.

  • Kasumi Inokuchi‎ et al.
  • Nature communications‎
  • 2017‎

Odour information induces various innate responses that are critical to the survival of the individual and for the species. An axon guidance molecule, Neuropilin 2 (Nrp2), is known to mediate targeting of olfactory sensory neurons (primary neurons), to the posteroventral main olfactory bulb (PV MOB) in mice. Here we report that Nrp2-positive (Nrp2+) mitral cells (MCs, second-order neurons) play crucial roles in transmitting attractive social signals from the PV MOB to the anterior part of medial amygdala (MeA). Semaphorin 3F, a repulsive ligand to Nrp2, regulates both migration of Nrp2+ MCs to the PV MOB and their axonal projection to the anterior MeA. In the MC-specific Nrp2 knockout mice, circuit formation of Nrp2+ MCs and odour-induced attractive social responses are impaired. In utero, electroporation demonstrates that activation of the Nrp2 gene in MCs is sufficient to instruct their circuit formation from the PV MOB to the anterior MeA.


Rhythmic synchronization tapping to an audio-visual metronome in budgerigars.

  • Ai Hasegawa‎ et al.
  • Scientific reports‎
  • 2011‎

In all ages and countries, music and dance have constituted a central part in human culture and communication. Recently, vocal-learning animals such as parrots and elephants have been found to share rhythmic ability with humans. Thus, we investigated the rhythmic synchronization of budgerigars, a vocal-mimicking parrot species, under controlled conditions and a systematically designed experimental paradigm as a first step in understanding the evolution of musical entrainment. We trained eight budgerigars to perform isochronous tapping tasks in which they pecked a key to the rhythm of audio-visual metronome-like stimuli. The budgerigars showed evidence of entrainment to external stimuli over a wide range of tempos. They seemed to be inherently inclined to tap at fast tempos, which have a similar time scale to the rhythm of budgerigars' natural vocalizations. We suggest that vocal learning might have contributed to their performance, which resembled that of humans.


Vocal area-related expression of the androgen receptor in the budgerigar (Melopsittacus undulatus) brain.

  • Eiji Matsunaga‎ et al.
  • Brain research‎
  • 2008‎

The androgen receptor is a steroid hormone receptor widely expressed in the vocal control nuclei in songbirds. Here, we analysed androgen receptor expression in the brains of juvenile and adult budgerigars. With a species-specific probe for budgerigar androgen receptor mRNA, we found that the androgen receptor was expressed in the vocal areas, such as the central nucleus of the lateral nidopallium, the anterior arcopallium, the oval nucleus of the mesopallium, the oval nucleus of the anterior nidopallium and the tracheosyringeal hypoglossal nucleus. With the present data, together with previous reports, it turned out that the androgen receptor expression in telencephalic vocal control areas is similar amongst three groups of vocal learners--songbirds, hummingbirds and parrots, suggesting the possibility that the androgen receptor might play a role in vocal development and that the molecular mechanism regulating the androgen receptor expression in the vocal areas might be important in the evolution of vocal learning.


The rate of telomere loss is related to maximum lifespan in birds.

  • Gianna M Tricola‎ et al.
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences‎
  • 2018‎

Telomeres are highly conserved regions of DNA that protect the ends of linear chromosomes. The loss of telomeres can signal an irreversible change to a cell's state, including cellular senescence. Senescent cells no longer divide and can damage nearby healthy cells, thus potentially placing them at the crossroads of cancer and ageing. While the epidemiology, cellular and molecular biology of telomeres are well studied, a newer field exploring telomere biology in the context of ecology and evolution is just emerging. With work to date focusing on how telomere shortening relates to individual mortality, less is known about how telomeres relate to ageing rates across species. Here, we investigated telomere length in cross-sectional samples from 19 bird species to determine how rates of telomere loss relate to interspecific variation in maximum lifespan. We found that bird species with longer lifespans lose fewer telomeric repeats each year compared with species with shorter lifespans. In addition, phylogenetic analysis revealed that the rate of telomere loss is evolutionarily conserved within bird families. This suggests that the physiological causes of telomere shortening, or the ability to maintain telomeres, are features that may be responsible for, or co-evolved with, different lifespans observed across species.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.


Regulation of action selection based on metacognition in humans via a ventral and dorsal medial prefrontal cortical network.

  • Shoko Yuki‎ et al.
  • Cortex; a journal devoted to the study of the nervous system and behavior‎
  • 2019‎

Metacognition is defined as cognition about one's own cognitive state; it enables us to estimate our own performance during goal-directed actions and to select a suitable strategy based on that estimation. Identifying the neural mechanisms that underlie this process will contribute to our understanding of how we realize adaptive self-control in daily life. Here, we focused on the neural substrates that allow us to voluntarily utilize prospective metacognition to carry out such action selection. Participants were asked to bet on their recall of sound stimuli presented at an earlier time in a delayed match-to-sample task of rapidly changing sound stimuli. During the task, brain activity was measured using functional magnetic resonance imaging. We found that the brain network composed of the ventral and dorsal parts of the medial prefrontal cortex and the medial precuneus regulated the strategic selection of risk/return profiles based on metacognition. In particular, increments in functional connectivity between the ventral and dorsal medial prefrontal cortices during high-risk/return bets correlated with the adaptiveness of the bet (as measured by the correspondence between choosing high risk/return bets and high accuracy of task performance). This index is considered to reflect the degree of voluntary use of metacognition to bet. These findings suggest that the strong connectivity within the network involving the ventral and dorsal medial prefrontal cortices enables us to utilize metacognition to select actions for achieving a goal efficiently.


USVSEG: A robust method for segmentation of ultrasonic vocalizations in rodents.

  • Ryosuke O Tachibana‎ et al.
  • PloS one‎
  • 2020‎

Rodents' ultrasonic vocalizations (USVs) provide useful information for assessing their social behaviors. Despite previous efforts in classifying subcategories of time-frequency patterns of USV syllables to study their functional relevance, methods for detecting vocal elements from continuously recorded data have remained sub-optimal. Here, we propose a novel procedure for detecting USV segments in continuous sound data containing background noise recorded during the observation of social behavior. The proposed procedure utilizes a stable version of the sound spectrogram and additional signal processing for better separation of vocal signals by reducing the variation of the background noise. Our procedure also provides precise time tracking of spectral peaks within each syllable. We demonstrated that this procedure can be applied to a variety of USVs obtained from several rodent species. Performance tests showed this method had greater accuracy in detecting USV syllables than conventional detection methods.


Oxytocin variation and brain region-specific gene expression in a domesticated avian species.

  • Yasuko Tobari‎ et al.
  • Genes, brain, and behavior‎
  • 2022‎

The Bengalese finch was domesticated more than 250 years ago from the wild white-rumped munia (WRM). Similar to other domesticated species, Bengalese finches show a reduced fear response and have lower corticosterone levels, compared to WRMs. Bengalese finches and munias also have different song types. Since oxytocin (OT) has been found to be involved in stress coping and auditory processing, we tested whether the OT sequence and brain expression pattern and content differ in wild munias and domesticated Bengalese finches. We sequenced the OT from 10 wild munias and 11 Bengalese finches and identified intra-strain variability in both the untranslated and protein-coding regions of the sequence, with all the latter giving rise to synonymous mutations. Several of these changes fall in specific transcription factor-binding sites, and show either a conserved or a relaxed evolutionary trend in the avian lineage, and in vertebrates in general. Although in situ hybridization in several hypothalamic nuclei did not reveal significant differences in the number of cells expressing OT between the two strains, real-time quantitative PCR showed a significantly higher OT mRNA expression in the cerebrum of the Bengalese finches relative to munias, but a significantly lower expression in their diencephalon. Our study thus points to a brain region-specific pattern of neurochemical expression in domesticated and wild avian strains, which could be linked to domestication and the behavioral changes associated with it.


Durations of preparatory motor activity in the avian basal ganglia for songs and calls in a species of songbirds.

  • Sachio Umemoto‎ et al.
  • Neuroscience research‎
  • 2022‎

Male songbirds are highly motivated to sing undirected song (US) as juveniles during song learning, and as adults. Given that singing US is a self-driven, elaborated behavior, we would expect to see preparatory activity in the striatal area prior to vocalization, and this preparatory activity could have different characteristics compared to activity driven by calls. In general, songs are longer, complex and influenced by learning while calls are shorter, simpler, and less influenced by experience. The present study recorded neural activity in Area X, a nucleus of the basal ganglia, in male Java sparrows (Lonchura oryzivora) in a sound-proof box and analyzed differences in activity change before US and trill-calls. Trill-calls were often emitted in social arousal, but occasionally emitted when alone. We saw a gradual increase in firing rate for about 2.3 s prior to the onset of US, and a shorter increase of about 1.3 s in firing rate prior to the onset of trill-calls. The results reveal that initiating US may be influenced by a prolonged and specific activity increase in the extent that is not seen with trill-calls. Results suggest that direct or indirect projections to Area X, which may reflect motivational state, could be the cause of this activity change.


Spontaneous variability predicts compensative motor response in vocal pitch control.

  • Ryosuke O Tachibana‎ et al.
  • Scientific reports‎
  • 2022‎

Our motor system uses sensory feedback to keep desired performance. From this view, motor fluctuation is not simply 'noise' inevitably caused in the nervous system but would play a role in generating variations to explore better outcomes via sensory feedback. Vocalization system offers a good model for studying such sensory-motor interactions since we regulate vocalization by hearing our own voice. This behavior is typically observed as compensatory responses in vocalized pitch, or fundamental frequency (fo), when artificial fo shifts were induced in the auditory feedback. However, the relationship between adaptive regulation and motor exploration in vocalization has remained unclear. Here we investigated behavioral variability in spontaneous vocal fo and compensatory responses against fo shifts in the feedback, and demonstrated that larger spontaneous fluctuation correlates with greater compensation in vocal fo. This correlation was found in slow components (≤ 5 Hz) of the spontaneous fluctuation but not in fast components (between 6 and 30 Hz), and the slow one was amplified during the compensatory responses. Furthermore, the compensatory ratio was reduced when large fo shifts were applied to the auditory feedback, as if reflecting the range of motor exploration. All these findings consistently suggest the functional role of motor variability in the exploration of better vocal outcomes.


Testosterone Increases the Emission of Ultrasonic Vocalizations With Different Acoustic Characteristics in Mice.

  • Takefumi Kikusui‎ et al.
  • Frontiers in psychology‎
  • 2021‎

Testosterone masculinizes male sexual behavior through an organizational and activational effects. We previously reported that the emission of ultrasonic vocalizations (USVs) in male mice was dependent on the organizational effects of testosterone; females treated with testosterone in the perinatal and peripubertal periods, but not in adults, had increased USV emissions compared to males. Recently, it was revealed that male USVs have various acoustic characteristics and these variations were related to behavioral interactions with other mice. In this regard, the detailed acoustic characteristic changes induced by testosterone have not been fully elucidated. Here, we revealed that testosterone administered to female and male mice modulated the acoustic characteristics of USVs. There was no clear difference in acoustic characteristics between males and females. Call frequencies were higher in testosterone propionate (TP)-treated males and females compared to control males and females. When the calls were classified into nine types, there was also no distinctive difference between males and females, but TP increased the number of calls with a high frequency, and decreased the number of calls with a low frequency and short duration. The transition analysis by call type revealed that even though there was no statistically significant difference, TP-treated males and females had a similar pattern of transition to control males and females, respectively. Collectively, these results suggest that testosterone treatment can enhance the emission of USVs both in male and female, but the acoustic characteristics of TP-treated females were not the same as those of intact males.


Microbial colonization history modulates anxiety-like and complex social behavior in mice.

  • Itsuka Kamimura‎ et al.
  • Neuroscience research‎
  • 2021‎

Microbiome composition has a pivotal role in neurobehavioral development. However, there is limited information about the role of the microbiome in sociability of mice in complex social contexts. Germ-free (GF) mice were reared in a microbiota-free environment until postnatal day 21 and then transferred to a room containing specific pathogen free (SPF) mice. At 9 weeks old, group social behaviors were measured for three GF mice and three SPF mice unfamiliar to each other. GF mice spent less time in the center area of the arena and there were longer inter-individual distances compared with SPF mice. GF mice also had decreased brain-derived neurotrophic factor (BDNF) and increased ΔFosB mRNA in the prefrontal cortex compared to SPF mice. There were differences in the gut microbiome composition between GF and SPF mice; however, if cohabitating after weaning, then their microbiome composition became equivalent and group differences in behavior and BDNF and ΔFosB mRNA expression disappeared. These results demonstrate that the bacterial community can modulate neural systems that are involved in sociability and anxiety during the developmental period and suggest that sociability and anxiety can be shaped depending on the microbiome environment through interaction with conspecifics.


Early weaning augments the spontaneous release of dopamine in the amygdala but not the prefrontal cortex: an in vivo microdialysis study of male rats.

  • Masatoshi Takita‎ et al.
  • Experimental animals‎
  • 2020‎

Our early weaning schedule was associated with the emergence of trait anxiety in male rodents performing an elevated plus maze but not an open-field test. We previously reported that early weaning weakened excitatory neurotransmission to the amygdala from the prefrontal cortex, where the mesocorticolimbic dopaminergic (DAergic) fiber terminates on each. In this study, we investigated DAergic transmission in both these brain regions. The extracellular levels of amygdalar DA in adulthood were two times higher in rats weaned at 16 days compared to those weaned at 30 days in both the home cage and the open-field. This difference in extracellular DA levels was not apparent in the prefrontal cortex. The concurrently measured locomotor and rearing behaviors did not vary according to the weaning period and the probe-implanted region, respectively. These results suggest that the effects of early weaning on DA tone appear to be specific to the amygdala and do not represent ubiquitous upregulation as these changes were not observed in the prefrontal cortex.


Arousal State-Dependent Alterations in Neural Activity in the Zebra Finch VTA/SNc.

  • Shin Yanagihara‎ et al.
  • Frontiers in neuroscience‎
  • 2020‎

Sleep-wake behaviors are important for survival and highly conserved among animal species. A growing body of evidence indicates that the midbrain dopaminergic system is associated with sleep-wake regulation in mammals. Songbirds exhibit mammalian-like sleep structures, and neurons in the midbrain ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) possess physiological properties similar to those in mammals. However, it remains uncertain whether the neurons in the songbird VTA/SNc are associated with sleep-wake regulation. Here, we show that VTA/SNc neurons in zebra finches exhibit arousal state-dependent alterations in spontaneous neural activity. By recording extracellular single-unit activity from anesthetized or freely behaving zebra finches, we found that VTA/SNc neurons exhibited increased firing rates during wakefulness, and the same population of neurons displayed reduced firing rates during anesthesia and slow-wave sleep. These results suggest that the songbird VTA/SNc is associated with the regulation of sleep and wakefulness along with other arousal regulatory systems. These findings raise the possibility that fundamental neural mechanisms of sleep-wake behaviors are evolutionarily conserved between birds and mammals.


Humanized substitutions of Vmat1 in mice alter amygdala-dependent behaviors associated with the evolution of anxiety.

  • Daiki X Sato‎ et al.
  • iScience‎
  • 2022‎

The human vesicular monoamine transporter 1 (VMAT1) harbors unique substitutions (Asn136Thr/Ile) that affect monoamine uptake into synaptic vesicles. These substitutions are absent in all known mammals, suggesting their contributions to distinct aspects of human behavior modulated by monoaminergic transmissions, such as emotion and cognition. To directly test the impact of these human-specific mutations, we introduced the humanized residues into mouse Vmat1 via CRISPR/Cas9-mediated genome editing and examined changes at the behavioral, neurophysiological, and molecular levels. Behavioral tests revealed reduced anxiety-related traits of Vmat1 Ile mice, consistent with human studies, and electrophysiological recordings showed altered oscillatory activity in the amygdala under anxiogenic conditions. Transcriptome analyses further identified changes in gene expressions in the amygdala involved in neurodevelopment and emotional regulation, which may corroborate the observed phenotypes. This knock-in mouse model hence provides compelling evidence that the mutations affecting monoaminergic signaling and amygdala circuits have contributed to the evolution of human socio-emotional behaviors.


Application of a Machine Learning Algorithm for Structural Brain Images in Chronic Schizophrenia to Earlier Clinical Stages of Psychosis and Autism Spectrum Disorder: A Multiprotocol Imaging Dataset Study.

  • Yinghan Zhu‎ et al.
  • Schizophrenia bulletin‎
  • 2022‎

Machine learning approaches using structural magnetic resonance imaging (MRI) can be informative for disease classification; however, their applicability to earlier clinical stages of psychosis and other disease spectra is unknown. We evaluated whether a model differentiating patients with chronic schizophrenia (ChSZ) from healthy controls (HCs) could be applied to earlier clinical stages such as first-episode psychosis (FEP), ultra-high risk for psychosis (UHR), and autism spectrum disorders (ASDs).


CA2 inhibition reduces the precision of hippocampal assembly reactivation.

  • Hongshen He‎ et al.
  • Neuron‎
  • 2021‎

The structured reactivation of hippocampal neuronal ensembles during fast synchronous oscillatory events, termed sharp-wave ripples (SWRs), has been suggested to play a crucial role in the storage and use of memory. Activity in both the CA2 and CA3 subregions can precede this population activity in CA1, and chronic inhibition of either region alters SWR oscillations. However, the precise contribution of CA2 to the oscillation, as well as to the reactivation of CA1 neurons within it, remains unclear. Here, we employ chemogenetics to transiently silence CA2 pyramidal cells in mice, and we observe that although SWRs still occur, the reactivation of CA1 pyramidal cell ensembles within the events lose both temporal and informational precision. These observations suggest that CA2 activity contributes to the fidelity of experience-dependent hippocampal replay.


An exploratory study of behavioral traits and the establishment of social relationships in female laboratory rats.

  • Shiomi Hakataya‎ et al.
  • PloS one‎
  • 2023‎

There is growing evidence that social relationships influence individual fitness through various effects. Clarifying individual differences in social interaction patterns and determinants for such differences will lead to better understanding of sociality and its fitness consequences for animals. Behavioral traits are considered one of the determining factors of social interaction. The purpose of this study was to explore the effects of individual behavioral traits on social relationship building in laboratory rats (Rattus norvegicus), a highly social species. Initially, the following behavioral characteristics were measured in individuals: tameness (glove test), activity (open field test), exploration (novel object test), sociability (three-chamber test), and boldness (elevated plus maze test). We then used DeepLabCut to behaviorally track three groups of four individuals (12 total) and analyze social behaviors such as approach and avoidance behaviors. Principal component analysis based on behavioral test results detected behavioral traits interpreted as related to exploration, boldness, activity, and tameness, but not sociability. In addition, behavioral tracking results showed consistent individual differences in social behavior indices such as isolation time and partner preference. Furthermore, we found that different components were correlated with different phases of social behavior; exploration and boldness were associated with the early stages of group formation, whereas activity was associated with later stages of relationship building. From these results, we derived hypothesize that personality traits related to the physical and social environment have a larger influence in the relationship formation phase, and the behavioral trait of activity becomes important in the maintenance phase of relationships. Future studies should examine this hypothesis by testing larger group sizes and ensuring there is less bias introduced into group composition.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: