Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Impaired cardiac contractile function in arginine:glycine amidinotransferase knockout mice devoid of creatine is rescued by homoarginine but not creatine.

  • Kiterie M E Faller‎ et al.
  • Cardiovascular research‎
  • 2018‎

Creatine buffers cellular adenosine triphosphate (ATP) via the creatine kinase reaction. Creatine levels are reduced in heart failure, but their contribution to pathophysiology is unclear. Arginine:glycine amidinotransferase (AGAT) in the kidney catalyses both the first step in creatine biosynthesis as well as homoarginine (HA) synthesis. AGAT-/- mice fed a creatine-free diet have a whole body creatine-deficiency. We hypothesized that AGAT-/- mice would develop cardiac dysfunction and rescue by dietary creatine would imply causality.


Homoarginine and creatine deficiency do not exacerbate murine ischaemic heart failure.

  • Debra J McAndrew‎ et al.
  • ESC heart failure‎
  • 2023‎

Low levels of homoarginine and creatine are associated with heart failure severity in humans, but it is unclear to what extent they contribute to pathophysiology. Both are synthesized via L-arginine:glycine amidinotransferase (AGAT), such that AGAT-/- mice have a combined creatine and homoarginine deficiency. We hypothesized that this would be detrimental in the setting of chronic heart failure.


Myocardial creatine levels do not influence response to acute oxidative stress in isolated perfused heart.

  • Dunja Aksentijević‎ et al.
  • PloS one‎
  • 2014‎

Multiple studies suggest creatine mediates anti-oxidant activity in addition to its established role in cellular energy metabolism. The functional significance for the heart has yet to be established, but antioxidant activity could contribute to the cardioprotective effect of creatine in ischaemia/reperfusion injury.


Mice over-expressing the myocardial creatine transporter develop progressive heart failure and show decreased glycolytic capacity.

  • Darci Phillips‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2010‎

The metabolic phenotype of the failing heart includes a decrease in phosphocreatine and total creatine concentration [Cr], potentially contributing to contractile dysfunction. Surprisingly, in 32- week-old mice over-expressing the myocardial creatine transporter (CrT-OE), we previously demonstrated that elevated [Cr] correlates with left ventricular (LV) hypertrophy and failure. The aim of this study was to determine the temporal relationship between elevated [Cr] and the onset of cardiac dysfunction and to screen for potential molecular mechanisms. CrT-OE mice were compared with wild-type (WT) littermate controls longitudinally using cine-MRI to measure cardiac function and single-voxel (1)H-MRS to measure [Cr] in vivo at 6, 16, 32, and 52 weeks of age. CrT-OE mice had elevated [Cr] at 6 weeks (mean 1.9-fold), which remained constant throughout life. Despite this increased [Cr], LV dysfunction was not apparent until 16 weeks and became more pronounced with age. Additionally, LV tissue from 12 to 14 week old CrT-OE mice was compared to WT using 2D difference in-gel electrophoresis (DIGE). These analyses detected a majority of the heart's metabolic enzymes and identified seven proteins that were differentially expressed between groups. The most pronounced protein changes were related to energy metabolism: alpha- and beta-enolase were selectively decreased (p<0.05), while the remaining enzymes of glycolysis were unchanged. Consistent with a decrease in enolase content, its activity was significantly lower in CrT-OE hearts (in WT, 0.59+/-0.02 micromol ATP produced/microg protein/min; CrT-OE, 0.31+/-0.06; p<0.01). Additionally, anaerobic lactate production was decreased in CrT-OE mice (in WT, 102+/-3 micromol/g wet myocardium; CrT-OE, 78+/-13; p=0.02), consistent with decreased glycolytic capacity. Finally, we found that enolase may be regulated by increased expression of the beta-enolase repressor transcription factor, which was significantly increased in CrT-OE hearts. This study demonstrates that chronically increased myocardial [Cr] in the CrT-OE model leads to the development of progressive hypertrophy and heart failure, which may be mediated by a compromise in glycolytic capacity at the level of enolase.


Chronic creatine kinase deficiency eventually leads to congestive heart failure, but severity is dependent on genetic background, gender and age.

  • Craig A Lygate‎ et al.
  • Basic research in cardiology‎
  • 2012‎

The creatine kinase (CK) energy transport and buffering system supports cardiac function at times of high demand and is impaired in the failing heart. Mice deficient in muscle- and mitochondrial-CK (M/Mt-CK(-/-)) have previously been described, but exhibit an unexpectedly mild phenotype of compensated left ventricular (LV) hypertrophy. We hypothesised that heart failure would develop with age and performed echocardiography and LV haemodynamics at 1 year. Since all previous studies have utilised mice with a mixed genetic background, we backcrossed for >10 generations on to C57BL/6, and repeated the in vivo investigations. Male M/Mt-CK(-/-) mice on the mixed genetic background developed congestive heart failure as evidenced by significantly elevated end-diastolic pressure, impaired contractility, LV dilatation, hypertrophy and pulmonary congestion. Female mice were less severely affected, only showing trends for these parameters. After backcrossing, M/Mt-CK(-/-) mice had LV dysfunction consisting of impaired isovolumetric pressure changes and reduced contractile reserve, but did not develop congestive heart failure. Body weight was lower in knockout mice as a consequence of reduced total body fat. LV weight was not significantly elevated in relation to other internal organs and gene expression of LVH markers was normal, suggesting an absence of hypertrophy. In conclusion, the consequences of CK deficiency are highly dependent on genetic modifiers, gender and age. However, the observation that a primary defect in CK can, under the right conditions, result in heart failure suggests that impaired CK activity in the failing heart could contribute to disease progression.


Over-expression of mitochondrial creatine kinase in the murine heart improves functional recovery and protects against injury following ischaemia-reperfusion.

  • Hannah J Whittington‎ et al.
  • Cardiovascular research‎
  • 2018‎

Mitochondrial creatine kinase (MtCK) couples ATP production via oxidative phosphorylation to phosphocreatine in the cytosol, which acts as a mobile energy store available for regeneration of ATP at times of high demand. We hypothesized that elevating MtCK would be beneficial in ischaemia-reperfusion (I/R) injury.


Synergistic effect on cardiac energetics by targeting the creatine kinase system: in vivo application of high-resolution 31P-CMRS in the mouse.

  • Mahon L Maguire‎ et al.
  • Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance‎
  • 2023‎

Phosphorus cardiovascular magnetic resonance spectroscopy (31P-CMRS) has emerged as an important tool for the preclinical assessment of myocardial energetics in vivo. However, the high rate and diminutive size of the mouse heart is a challenge, resulting in low resolution and poor signal-to-noise. Here we describe a refined high-resolution 31P-CMRS technique and apply it to a novel double transgenic mouse (dTg) with elevated myocardial creatine and creatine kinase (CK) activity. We hypothesised a synergistic effect to augment energetic status, evidenced by an increase in the ratio of phosphocreatine-to-adenosine-triphosphate (PCr/ATP).


Refinement of analgesia following thoracotomy and experimental myocardial infarction using the Mouse Grimace Scale.

  • Kiterie M E Faller‎ et al.
  • Experimental physiology‎
  • 2015‎

What is the central question of this study? There is an ethical imperative to optimize analgesia protocols for laboratory animals, but this is impeded by our inability to recognize pain reliably. We examined whether the Mouse Grimace Scale (MGS) provides benefits over a standard welfare scoring system for identifying a low level of pain in the frequently used murine surgical model of myocardial infarction. What is the main finding and its importance? Low-level pain, responsive to analgesia, was detected by MGS but not standard methods. In this model, most of the pain is attributable to the thoracotomy, excepted in mice with very large infarcts. This approach represents a model for assessing postsurgical analgesia in rodents. The Mouse Grimace Scale (MGS) was developed for assessing pain severity, but the general applicability to complex postsurgical pain has not been established. We sought to determine whether the MGS provides benefits over and above a standard welfare scoring system for identifying pain in mice following experimental myocardial infarction. Female C57BL/6J mice (n = 60), anaesthetized with isoflurane, were subjected to thoracotomy with ligation of a coronary artery or sham procedure. A single s.c. dose of buprenorphine (1.1 mg kg(-1) ) was given at the time of surgery and pain assessed at 24 h by MGS and a procedure-specific welfare scoring system. In some animals, a second dose of 0.6 mg kg(-1) buprenorphine was given and pain assessment repeated after 30 min. The MGS was scored from multiple photographs by two independent blinded observers with good correlation (r = 0.98). Using the average MGS score of both observers, we identified a subset of mice with low scores that were not considered to be in pain by the welfare scoring system or by single observer MGS. These mice showed a significant improvement with additional analgesia, suggesting that this low-level pain is real. Pain attributable to the myocardial injury, as opposed to thoracotomy, persisted at 24 h only in mice with large infarcts >40%. In conclusion, the use of a multi-observer, post hoc version of the MGS is a sensitive tool to assess the efficacy of postsurgical analgesic protocols. Following surgical induction of myocardial infarction, we identified a significant proportion of mice that were in low-level pain at 24 h that were not identified by other assessment methods.


Age-Dependent Decline in Cardiac Function in Guanidinoacetate-N-Methyltransferase Knockout Mice.

  • Dunja Aksentijević‎ et al.
  • Frontiers in physiology‎
  • 2019‎

Guanidinoacetate N-methyltransferase (GAMT) is the second essential enzyme in creatine (Cr) biosynthesis. Short-term Cr deficiency is metabolically well tolerated as GAMT-/- mice exhibit normal exercise capacity and response to ischemic heart failure. However, we hypothesized long-term consequences of Cr deficiency and/or accumulation of the Cr precursor guanidinoacetate (GA).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: