Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,221 papers

Association between HLA-DRB1 alleles polymorphism and hepatocellular carcinoma: a meta-analysis.

  • Zhong-Hua Lin‎ et al.
  • BMC gastroenterology‎
  • 2010‎

HLA-DRB1 allele polymorphisms have been reported to be associated with hepatocellular carcinoma susceptibility, but the results of these previous studies have been inconsistent. The purpose of the present study was to explore whether specific HLA-DRB1 alleles (DRB1*07, DRB1*12, DRB1*15) confer susceptibility to hepatocellular carcinoma.


Curcumin activates the p38MPAK-HSP25 pathway in vitro but fails to attenuate diabetic nephropathy in DBA2J mice despite urinary clearance documented by HPLC.

  • Jun Ma‎ et al.
  • BMC complementary and alternative medicine‎
  • 2010‎

Curcumin has anti-inflammatory, anti-oxidant, and anti-proliferative properties, and depending upon the experimental circumstances, may be pro- or anti-apoptotic. Many of these biological actions could ameliorate diabetic nephropathy.


Coordinated changes in dendritic arborization and synaptic strength during neural circuit development.

  • Yi-Rong Peng‎ et al.
  • Neuron‎
  • 2009‎

Neural circuit development requires concurrent morphological and functional changes. Here, we identify coordinated and inversely correlated changes in dendritic morphology and mEPSC amplitude following increased neural activity. We show that overexpression of beta-catenin, a molecule that increases total dendritic length, mimics the effects of increased neuronal activity by scaling down mEPSC amplitudes, while postsynaptic expression of a protein that sequesters beta-catenin reverses the effects of activity on reducing mEPSC amplitudes. These results were confirmed immunocytochemically as changes in the size and density of surface synaptic AMPA receptor clusters. In individual neurons there was an inverse linear relationship between total dendritic length and average mEPSC amplitude. Importantly, beta-catenin overexpression in vivo promoted dendritic growth and reduced mEPSC amplitudes. Together, these results demonstrate that coordinated changes in dendritic morphology and unitary excitatory synaptic strength may serve as an important intrinsic mechanism that helps prevent neurons from overexcitation during neural circuit development.


Neuronopathic Gaucher disease in the mouse: viable combined selective saposin C deficiency and mutant glucocerebrosidase (V394L) mice with glucosylsphingosine and glucosylceramide accumulation and progressive neurological deficits.

  • Ying Sun‎ et al.
  • Human molecular genetics‎
  • 2010‎

Gaucher disease is caused by defective acid beta-glucosidase (GCase) function. Saposin C is a lysosomal protein needed for optimal GCase activity. To test the in vivo effects of saposin C on GCase, saposin C deficient mice (C-/-) were backcrossed to point mutated GCase (V394L/V394L) mice. The resultant mice (4L;C*) began to exhibit CNS abnormalities approximately 30 days: first as hindlimb paresis, then progressive tremor and ataxia. Death occurred approximately 48 days due to neurological deficits. Axonal degeneration was evident in brain stem, spinal cord and white matter of cerebellum accompanied by increasing infiltration of the brain stem, cortex and thalamus by CD68 positive microglial cells and activation of astrocytes. Electron microscopy showed inclusion bodies in neuronal processes and degenerating cells. Accumulation of p62 and Lamp2 were prominent in the brain suggesting the impairment of autophagosome/lysosome function. This phenotype was different from either V394L/V394L or C-/- alone. Relative to V394L/V394L mice, 4L;C* mice had diminished GCase protein and activity. Marked increases (20- to 30-fold) of glucosylsphingosine (GS) and moderate elevation (1.5- to 3-fold) of glucosylceramide (GC) were in 4L;C* brains. Visceral tissues had increases of GS and GC, but no storage cells were found. Neuronal cells in thick hippocampal slices from 4L;C* mice had significantly attenuated long-term potentiation, presumably resulting from substrate accumulation. The 4L;C* mouse mimics the CNS phenotype and biochemistry of some type 3 (neuronopathic) variants of Gaucher disease and is a unique model suitable for testing pharmacological chaperone and substrate reduction therapies, and investigating the mechanisms of neuronopathic Gaucher disease.


Effect of spaceflight on the circadian rhythm, lifespan and gene expression of Drosophila melanogaster.

  • Lingling Ma‎ et al.
  • PloS one‎
  • 2015‎

Space travelers are reported to experience circadian rhythm disruption during spaceflight. However, how the space environment affects circadian rhythm is yet to be determined. The major focus of this study was to investigate the effect of spaceflight on the Drosophila circadian clock at both the behavioral and molecular level. We used China's Shenzhou-9 spaceship to carry Drosophila. After 13 days of spaceflight, behavior tests showed that the flies maintained normal locomotor activity rhythm and sleep pattern. The expression level and rhythm of major clock genes were also unaffected. However, expression profiling showed differentially regulated output genes of the circadian clock system between space flown and control flies, suggesting that spaceflight affected the circadian output pathway. We also investigated other physiological effects of spaceflight such as lipid metabolism and lifespan, and searched genes significantly affected by spaceflight using microarray analysis. These results provide new information on the effects of spaceflight on circadian rhythm, lipid metabolism and lifespan. Furthermore, we showed that studying the effect of spaceflight on gene expression using samples collected at different Zeitgeber time could obtain different results, suggesting the importance of appropriate sampling procedures in studies on the effects of spaceflight.


Proteome profiling of heat, oxidative, and salt stress responses in Thermococcus kodakarensis KOD1.

  • Baolei Jia‎ et al.
  • Frontiers in microbiology‎
  • 2015‎

The thermophilic species, Thermococcus kodakarensis KOD1, a model microorganism for studying hyperthermophiles, has adapted to optimal growth under conditions of high temperature and salinity. However, the environmental conditions for the strain are not always stable, and this strain might face different stresses. In the present study, we compared the proteome response of T. kodakarensis to heat, oxidative, and salt stresses using two-dimensional electrophoresis, and protein spots were identified through MALDI-TOF/MS. Fifty-nine, forty-two, and twenty-nine spots were induced under heat, oxidative, and salt stresses, respectively. Among the up-regulated proteins, four proteins (a hypothetical protein, pyridoxal biosynthesis lyase, peroxiredoxin, and protein disulphide oxidoreductase) were associated with all three stresses. Gene ontology analysis showed that these proteins were primarily involved metabolic and cellular processes. The KEGG pathway analysis suggested that the main metabolic pathways involving these enzymes were related to carbohydrate metabolism, secondary metabolite synthesis, and amino acid biosynthesis. These data might enhance our understanding of the functions and molecular mechanisms of thermophilic Archaea for survival and adaptation in extreme environments.


Knockdown of long non-coding RNA HOTAIR inhibits malignant biological behaviors of human glioma cells via modulation of miR-326.

  • Jing Ke‎ et al.
  • Oncotarget‎
  • 2015‎

Glioma is the most common and aggressive primary adult brain tumor. Long non-coding RNAs (lncRNAs) have important roles in a variety of biological properties of cancers. Here, we elucidated the function and the possible molecular mechanisms of lncRNA HOTAIR in human glioma U87 and U251 cell lines. Quantitative RT-PCR demonstrated that HOTAIR expression was up-regulated in glioma tissues and cell lines. Knockdown of HOTAIR exerted tumor-suppressive function in glioma cells. Further, HOTAIR was confirmed to be the target of miR-326 and miR-326 mediated the tumor-suppressive effects of HOTAIR knockdown on glioma cell lines. Moreover, over-expressed miR-326 reduced the FGF1 expression which played an oncogenic role in glioma by activating PI3K/AKT and MEK 1/2 pathways. In addition, the in vivo studies also supported the above findings. Taken together, knockdown of HOTAIR up-regulated miR-326 expression, and further inducing the decreased expression of FGF1, these results provided a comprehensive analysis of HOTAIR-miR-326-FGF1 axis in human glioma and provided a new potential therapeutic strategy for glioma treatment.


Low-frequency transcranial magnetic stimulation is beneficial for enhancing synaptic plasticity in the aging brain.

  • Zhan-Chi Zhang‎ et al.
  • Neural regeneration research‎
  • 2015‎

In the aging brain, cognitive function gradually declines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (≤1 Hz) ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers), to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz) increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function.


Apoptosis associated with Wnt/β-catenin pathway leads to steroid-induced avascular necrosis of femoral head.

  • Chen Zhang‎ et al.
  • BMC musculoskeletal disorders‎
  • 2015‎

The objective of the current study was to establish a rat model to investigate apoptosis in steroid-induced femoral head osteonecrosis occurring via the Wnt/β-catenin pathway.


Adenovirus-mediated co-expression of the TRAIL and HN genes inhibits growth and induces apoptosis in Marek's disease tumor cell line MSB-1.

  • Dongxiao Dong‎ et al.
  • Cancer cell international‎
  • 2015‎

The objective of this study was to determine the in vitro tumor-inhibitory effect of a recombinant adenovirus expressing a fusion protein of tumor necrosis factor (TNF) related apoptosis inducing ligand (TRAIL) and hemagglutinin-neuraminidase (HN) genes on the MSB-1 Marek's disease tumor cell line.


A national school-based health lifestyles interventions among Chinese children and adolescents against obesity: rationale, design and methodology of a randomized controlled trial in China.

  • Yajun Chen‎ et al.
  • BMC public health‎
  • 2015‎

The prevalence of obesity among children and adolescents has been rapidly rising in Mainland China in recent decades, both in urban and rural areas. There is an urgent need to develop effective interventions to prevent childhood obesity. Limited rigid data regarding children and adolescent overweight prevention in China are available. A national random controlled school-based obesity intervention program was developed in the mainland of China.


Clopidogrel reduces the inflammatory response of lung in a rat model of decompression sickness.

  • Xiao-Chen Bao‎ et al.
  • Respiratory physiology & neurobiology‎
  • 2015‎

Inflammation and platelet activation are critical phenomena in the setting of decompression sickness. Clopidogrel (Clo) inhibits platelet activation and may also reduce inflammation. The goal of this study was to investigate if Clo had a protective role in decompression sickness (DCS) through anti-inflammation way. Male Sprague-Dawley rats (n=111) were assigned to three groups: control+vehicle group, DCS+vehicle, DCS+Clo group. The experimental group received 50 mg/kg of Clo or vehicle for 3 days, then compressed to 1,600 kPa (150 msw) in 28 s, maintained at 150 msw for 242 s and decompressed to surface at 3m/s. In a control experiment, rats were also treated with vehicle for 3 days and maintained at atmospheric pressure for an equivalent period of time. Clinical assessment took place over a period of 30 min after surfacing. At the end, blood samples were collected for blood cells counts and cytokine detection. The pathology and the wet/dry ratio of lung tissues, immunohistochemical detection of lung tissue CD41 expression, the numbers of P-selectin positive platelets and platelet-leukocyte conjugates in blood were tested. We found that Clo significantly reduced the DCS mortality risk (mortality rate: 11/45 with Clo vs. 28/46 in the untreated group, P<0.01). Clo reduced the lung injury, the wet/dry ratio of lung, the accumulation of platelet and leukocyte in lung, the fall in platelet count, the WBC count, the numbers of activated platelets and platelet-leukocyte complexes in peripheral blood. It was concluded that Clo can play a protective role in decompression sickness through reducing post-decompression platelet activation and inflammatory process.


Altered splenic miRNA expression profile in H1N1 swine influenza.

  • Liangzong Huang‎ et al.
  • Archives of virology‎
  • 2015‎

Previous studies have demonstrated the key regulatory roles played by microRNAs (miRNAs) in influenza virus-host interactions. To gain more insight into the contribution of miRNAs to the host immune response, spleen tissues from mice infected with A/Swine/GD/2/12 (H1N1) virus were harvested 5 days postinfection, and miRNA deep sequencing was performed. The results showed that 50 miRNAs were modulated. Interestingly, pathway analysis of miRNAs and targets showed that upregulated miR-124-3p interacts with innate immune-related pathways such as the Toll-like receptor pathway, RIG-I-like receptor signaling pathway, NOD-like receptor signaling pathway and JAK-STAT signaling pathway, and this might play a major role in the anti-inflammatory response. Further understanding of the roles played by these miRNAs in influenza virus infection will provide new insights into host-pathogen interactions.


Molecular mechanism of fluoroquinolones resistance in Mycoplasma hominis clinical isolates.

  • Dong-Ya Meng‎ et al.
  • Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]‎
  • 2014‎

To evaluate the molecular mechanism of fluoroquinolones resistance in Mycoplasma hominis (MH) clinical strains isolated from urogenital specimens. 15 MH clinical isolates with different phenotypes of resistance to fluoroquinolones antibiotics were screened for mutations in the quinolone resistance-determining regions (QRDRs) of DNA gyrase (gyrA and gyrB) and topoisomerase IV (parC and parE) in comparison with the reference strain PG21, which is susceptible to fluoroquinolones antibiotics. 15 MH isolates with three kinds of quinolone resistance phenotypes were obtained. Thirteen out of these quinolone-resistant isolates were found to carry nucleotide substitutions in either gyrA or parC. There were no alterations in gyrB and no mutations were found in the isolates with a phenotype of resistance to Ofloxacin (OFX), intermediate resistant to Levofloxacin (LVX) and Sparfloxacin (SFX), and those susceptible to all three tested antibiotics. The molecular mechanism of fluoroquinolone resistance in clinical isolates of MH was reported in this study. The single amino acid mutation in ParC of MH may relate to the resistance to OFX and LVX and the high-level resistance to fluoroquinolones for MH is likely associated with mutations in both DNA gyrase and the ParC subunit of topoisomerase IV.


Effects of dimethylaminoethanol and compound amino acid on D-galactose induced skin aging model of rat.

  • Su Liu‎ et al.
  • TheScientificWorldJournal‎
  • 2014‎

A lasting dream of human beings is to reverse or postpone aging. In this study, dimethylaminoethanol (DMAE) and compound amino acid (AA) in Mesotherapy were investigated for their potential antiaging effects on D-galactose induced aging skin. At 18 days after D-gal induction, each rat was treated with intradermal microinjection of saline, AA, 0.1% DMAE, 0.2% DMAE, 0.1% DMAE + AA, or 0.2% DMAE + AA, respectively. At 42 days after treatment, the skin wound was harvested and assayed. Measurement of epidermal and dermal thickness in 0.1% DMAE + AA and 0.2% DMAE + AA groups appeared significantly thicker than aging control rats. No differences were found in tissue water content among groups. Hydroxyproline in 0.1% DMAE + AA, 0.2% DMAE + AA, and sham control groups was much higher than all other groups. Collagen type I, type III, and MMP-1 expression was highly upregulated in both 0.1% DMAE + AA and 0.2% DMAE + AA groups compared with aging control. In contrast, TIMP-1 expression levels of various aging groups were significantly reduced when compared to sham control. Coinjection of DMAE and AA into target tissue has marked antiaging effects on D-galactose induced skin aging model of rat.


Rotenone remarkably attenuates oxidative stress, inflammation, and fibrosis in chronic obstructive uropathy.

  • Ying Sun‎ et al.
  • Mediators of inflammation‎
  • 2014‎

Mitochondrial abnormality has been shown in many kidney disease models. However, its role in the pathogenesis of chronic kidney diseases (CKDs) is still uncertain. In present study, a mitochondrial complex I inhibitor rotenone was applied to the mice subjected to unilateral ureteral obstruction (UUO). Following 7-days rotenone treatment, a remarkable attenuation of tubular injury was detected by PAS staining. In line with the improvement of kidney morphology, rotenone remarkably blunted fibrotic response as shown by downregulation of fibronectin (FN), plasminogen activator inhibitor-1 (PAI-1), collagen I, collagen III, and α-SMA, paralleled with a substantial decrease of TGF-β 1. Meanwhile, the oxidative stress markers thiobarbituric acid-reactive substances (TBARS) and heme oxygenase 1 (HO-1) and inflammatory markers TNF-α, IL-1β, and ICAM-1 were markedly decreased. More importantly, the reduction of mitochondrial DNA copy number and mitochondrial NADH dehydrogenase subunit 1 (mtND1) expression in obstructed kidneys was moderately but significantly restored by rotenone, suggesting an amelioration of mitochondrial injury. Collectively, mitochondrial complex I inhibitor rotenone protected kidneys against obstructive injury possibly via inhibition of mitochondrial oxidative stress, inflammation, and fibrosis, suggesting an important role of mitochondrial dysfunction in the pathogenesis of obstructive kidney disease.


Preparation of bufalin-loaded pluronic polyetherimide nanoparticles, cellular uptake, distribution, and effect on colorectal cancer.

  • Qiang Hu‎ et al.
  • International journal of nanomedicine‎
  • 2014‎

A large number of studies have shown that bufalin can have a significant antitumor effect in a variety of tumors. However, because of toxicity, insolubility in water, fast metabolism, short half-life, and other shortcomings, its application is limited in cancer therapy. In this study, we explored the anti-metastatic role of bufalin-loaded pluronic polyetherimide nanoparticles on HCT116 colon cancer-bearing mice. Nanoparticle size, shape, drug loading, encapsulation efficiency, and in vitro drug release were studied. Also, cellular uptake of nanoparticles, in vivo tumor targeting, and tumor metastasis were studied. The nanoparticles had a particle size of about 60 nm and an encapsulation efficiency of 75.71%, by weight. The in vitro release data showed that free bufalin was released faster than bufalin-loaded pluronic polyetherimide nanoparticles, and almost 80% of free bufalin was released after 32 hours. Nanoparticles had an even size distribution, were stable, and had a slow release and a tumor-targeting effect. Bufalin-loaded pluronic polyetherimide nanoparticles can significantly inhibit the growth and metastasis of colorectal cancer.


Microstructural abnormalities in the combined and inattentive subtypes of attention deficit hyperactivity disorder: a diffusion tensor imaging study.

  • Du Lei‎ et al.
  • Scientific reports‎
  • 2014‎

Previous research has demonstrated that there are specific white matter abnormalities in patients with attention deficit/hyperactivity disorder (ADHD). However, the results of these studies are not consistent, and one of the most important factors that affects the inconsistency of previous studies maybe the ADHD subtype. Different ADHD subtypes may have some overlapping microstructural damage, but they may also have unique microstructural abnormalities. The objective of this study was to investigate the microstructural abnormalities associated with two subtypes of ADHD: combined (ADHD-C) and inattentive (ADHD-I). Twenty-eight children with ADHD-C, 28 children with ADHD-I and 28 healthy children participated in this study. Fractional anisotropy (FA), radial diffusivity (RD) and axial diffusivity (AD) were used to analyze diffusion tensor imaging (DTI) data to provide specific information regarding abnormal brain areas. Our results demonstrated that ADHD-I is related to abnormalities in the temporo-occipital areas, while the combined subtype (ADHD-C) is related to abnormalities in the frontal-subcortical circuit, the fronto-limbic pathway, and the temporo-occipital areas. Moreover, an abnormality in the motor circuit may represent the main difference between the ADHD-I and ADHD-C subtypes.


Repetitive transcranial magnetic stimulation (rTMS) influences spatial cognition and modulates hippocampal structural synaptic plasticity in aging mice.

  • Jun Ma‎ et al.
  • Experimental gerontology‎
  • 2014‎

Normal aging is characteristic with the gradual decline in cognitive function associated with the progressive reduction of structural and functional plasticity in the hippocampus. Repetitive transcranial magnetic stimulation (rTMS) has developed into a novel neurological and psychiatric tool that can be used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency rTMS (≤1Hz) affects synaptic plasticity in rats with vascular dementia (VaD), and it ameliorates the spatial cognitive ability in mice with Aβ1-42-mediated memory deficits, but there are little concerns about the effects of rTMS on normal aging related cognition and synaptic plasticity changes. Thus, the current study investigated the effects of rTMS on spatial memory behavior, neuron and synapse morphology in the hippocampus, and synaptic protein markers and brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) in normal aging mice, to illustrate the mechanisms of rTMS in regulating cognitive capacity. Relative to adult animals, aging caused hippocampal-dependent cognitive impairment, simultaneously inhibited the activation of the BDNF-TrkB signaling pathway, reduced the transcription and expression of synaptic protein markers: synaptophysin (SYN), growth associated protein 43 (GAP43) and post-synaptic density protein 95 (PSD95), as well as decreased synapse density and PSD (post-synaptic density) thickness. Interestingly, rTMS with low intensity (110% average resting motor threshold intensity, 1Hz, LIMS) triggered the activation of BDNF and TrkB, upregulated the level of synaptic protein markers, and increased synapse density and thickened PSD, and further reversed the spatial cognition dysfunction in aging mice. Conversely, high-intensity magnetic stimulation (150% average resting motor threshold intensity, 1Hz, HIMS) appeared to be detrimental, inducing thinning of PSDs, disordered synaptic structure, and a large number of lipofuscin accumulations, as well as reducing the number of synapses and downregulating BDNF-TrkB and synaptic proteins. Ultimately, HIMS further impaired the capacity for learning and memory. In conclusion, we infer that aging-induced cognitive deficits are closely associated with hippocampal structural synaptic plasticity, and low-frequency magnetic stimulation plays an important role in regulating cognitive behavior via changing structural synaptic plasticity, and BDNF signaling might participate in this event.


Reactive oxygen species promote ovarian cancer progression via the HIF-1α/LOX/E-cadherin pathway.

  • Yu Wang‎ et al.
  • Oncology reports‎
  • 2014‎

Reactive oxygen species (ROS) can drive the de‑differentiation of tumor cells leading to the process of epithelial-to-mesenchymal transition (EMT) to enhance invasion and metastasis. The invasive and metastatic phenotype of malignant cells is often linked to loss of E-cadherin expression, a hallmark of EMT. Recent studies have demonstrated that hypoxic exposure causes HIF-1-dependent repression of E-cadherin. However, the mechanism by which ROS and/or HIF suppresses E-cadherin expression remains less clear. In the present study, we found that ROS accumulation in ovarian carcinoma cells upregulated HIF-1α expression and subsequent transcriptional induction of lysyl oxidase (LOX) which repressed E-cadherin. Loss of E-cadherin facilitated ovarian cancer (OC) cell migration in vitro and promoted tumor growth in vivo. E-cadherin immunoreactivity correlated with International Federation of Gynecology and Obstetrics (FIGO) stage, tumor differentiation and metastasis. Negative E-cadherin expression along with FIGO stage, tumor differentiation and metastasis significantly predicted for a lower 5-year survival rate. These findings suggest that ROS play an important role in the initiation of metastatic growth of OC cells and support a molecular pathway from ROS to aggressive transformation which involves upregulation of HIF-1α and its downstream target LOX to suppress E-cadherin expression leading to an increase in cell motility and invasiveness.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: