Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Reactive oxygen species promote ovarian cancer progression via the HIF-1α/LOX/E-cadherin pathway.

Oncology reports | 2014

Reactive oxygen species (ROS) can drive the de‑differentiation of tumor cells leading to the process of epithelial-to-mesenchymal transition (EMT) to enhance invasion and metastasis. The invasive and metastatic phenotype of malignant cells is often linked to loss of E-cadherin expression, a hallmark of EMT. Recent studies have demonstrated that hypoxic exposure causes HIF-1-dependent repression of E-cadherin. However, the mechanism by which ROS and/or HIF suppresses E-cadherin expression remains less clear. In the present study, we found that ROS accumulation in ovarian carcinoma cells upregulated HIF-1α expression and subsequent transcriptional induction of lysyl oxidase (LOX) which repressed E-cadherin. Loss of E-cadherin facilitated ovarian cancer (OC) cell migration in vitro and promoted tumor growth in vivo. E-cadherin immunoreactivity correlated with International Federation of Gynecology and Obstetrics (FIGO) stage, tumor differentiation and metastasis. Negative E-cadherin expression along with FIGO stage, tumor differentiation and metastasis significantly predicted for a lower 5-year survival rate. These findings suggest that ROS play an important role in the initiation of metastatic growth of OC cells and support a molecular pathway from ROS to aggressive transformation which involves upregulation of HIF-1α and its downstream target LOX to suppress E-cadherin expression leading to an increase in cell motility and invasiveness.

Pubmed ID: 25174950 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: P30 CA023100

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Quantity One 1-D Analysis Software (tool)

RRID:SCR_014280

Software used for Bio-Rad imaging systems to acquire, quantitate, and analyze a variety of data. The software allows automatic configuration of imaging systems with appropriate filters, lasers, LEDs, and other illumination sources. It also contains tools for automated analysis of tests and assays such as 1-D electrophoretic gels, western blots, and colony counts.

View all literature mentions

SK-OV-3 (tool)

RRID:CVCL_0532

Cell line SK-OV-3 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

SK-OV-3 (tool)

RRID:CVCL_0532

Cell line SK-OV-3 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions