Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 87 papers

Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis.

  • Vijay Ramaswamy‎ et al.
  • The Lancet. Oncology‎
  • 2013‎

Recurrent medulloblastoma is a therapeutic challenge because it is almost always fatal. Studies have confirmed that medulloblastoma consists of at least four distinct subgroups. We sought to delineate subgroup-specific differences in medulloblastoma recurrence patterns.


TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma.

  • Marc Remke‎ et al.
  • Acta neuropathologica‎
  • 2013‎

Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21 % of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83 %; 55/66) and WNT (31 %; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in <5 % of cases and showed no association with increased patient age. The prognostic implications of these mutations were highly subgroup-specific. TERT mutations identified a subset with good and poor prognosis in SHH and Group 4 tumors, respectively. Monosomy 6 was mostly restricted to WNT tumors without TERT mutations. Hallmark SHH focal copy number aberrations and chromosome 10q deletion were mutually exclusive with TERT mutations within SHH tumors. TERT promoter mutations are the most common recurrent somatic point mutation in medulloblastoma, and are very highly enriched in adult SHH and WNT tumors. TERT mutations define a subset of SHH medulloblastoma with distinct demographics, cytogenetics, and outcomes.


MiR-34a deficiency accelerates medulloblastoma formation in vivo.

  • Theresa Thor‎ et al.
  • International journal of cancer‎
  • 2015‎

Previous studies have evaluated the role of miRNAs in cancer initiation and progression. MiR-34a was found to be downregulated in several tumors, including medulloblastomas. Here we employed targeted transgenesis to analyze the function of miR-34a in vivo. We generated mice with a constitutive deletion of the miR-34a gene. These mice were devoid of mir-34a expression in all analyzed tissues, but were viable and fertile. A comprehensive standardized phenotypic analysis including more than 300 single parameters revealed no apparent phenotype. Analysis of miR-34a expression in human medulloblastomas and medulloblastoma cell lines revealed significantly lower levels than in normal human cerebellum. Re-expression of miR-34a in human medulloblastoma cells reduced cell viability and proliferation, induced apoptosis and downregulated the miR-34a target genes, MYCN and SIRT1. Activation of the Shh pathway by targeting SmoA1 transgene overexpression causes medulloblastoma in mice, which is dependent on the presence and upregulation of Mycn. Analysis of miR-34a in medulloblastomas derived from ND2:SmoA1(tg) mice revealed significant suppression of miR-34a compared to normal cerebellum. Tumor incidence was significantly increased and tumor formation was significantly accelerated in mice transgenic for SmoA1 and lacking miR-34a. Interestingly, Mycn and Sirt1 were strongly expressed in medulloblastomas derived from these mice. We here demonstrate that miR-34a is dispensable for normal development, but that its loss accelerates medulloblastomagenesis. Strategies aiming to re-express miR-34a in tumors could, therefore, represent an efficient therapeutic option.


Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis.

  • Vijay Ramaswamy‎ et al.
  • Journal of clinical oncology : official journal of the American Society of Clinical Oncology‎
  • 2016‎

Posterior fossa ependymoma comprises two distinct molecular variants termed EPN_PFA and EPN_PFB that have a distinct biology and natural history. The therapeutic value of cytoreductive surgery and radiation therapy for posterior fossa ependymoma after accounting for molecular subgroup is not known.


Constitutive activation of β-catenin in neural progenitors results in disrupted proliferation and migration of neurons within the central nervous system.

  • Julia Pöschl‎ et al.
  • Developmental biology‎
  • 2013‎

Wnt signaling is known to play crucial roles in the development of multiple organs as well as in cancer. In particular, constitutive activation of Wnt/β-Catenin signaling in distinct populations of forebrain or brainstem precursor cells has previously been shown to result in dramatic brain enlargement during embryonic stages of development as well as in the formation of medulloblastoma, a malignant brain tumor in childhood. In order to extend this knowledge to postnatal stages of both cerebral and cerebellar cortex development, we conditionally activated Wnt signaling by introducing a dominant active form of β-catenin in hGFAP-positive neural precursors. Such mutant mice survived up to 21 days postnatally. While the mice revealed enlarged ventricles and an initial expansion of the Pax6-positive ventricular zone, Pax6 expression and proliferative activity in the ventricular zone was virtually lost by embryonic day 16.5. Loss of Pax6 expression was not followed by expression of the subventricular zone marker Tbr2, indicating insufficient neuronal differentiation. In support of this finding, cortical thickness was severely diminished in all analyzed stages from embryonic day 14.5 to postnatal day 12, and appropriate layering was not detectable. Similarly, cerebella of hGFAP-cre::Ctnnb1(ex3)(Fl/+) mice were hypoplastic and displayed severe lamination defects. Constitutively active β-Catenin induced inappropriate proliferation of granule neurons and inadequate development of Bergmann glia, thereby preventing regular migration of granule cells and normal cortical layering. We conclude that Wnt signaling has divergent roles in the central nervous system and that Wnt needs to be tightly controlled in a time- and cell type-specific manner.


Dark-field imaging in coronary atherosclerosis.

  • Holger Hetterich‎ et al.
  • European journal of radiology‎
  • 2017‎

Dark-field imaging based on small angle X-ray scattering has been shown to be highly sensitive for microcalcifications, e.g. in breast tissue. We hypothesized (i) that high signal areas in dark-field imaging of atherosclerotic plaque are associated with microcalcifications and (ii) that dark-field imaging is more sensitive for microcalcifications than attenuation-based imaging.


DNA methylation-based classification of central nervous system tumours.

  • David Capper‎ et al.
  • Nature‎
  • 2018‎

Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.


Sarcoma classification by DNA methylation profiling.

  • Christian Koelsche‎ et al.
  • Nature communications‎
  • 2021‎

Sarcomas are malignant soft tissue and bone tumours affecting adults, adolescents and children. They represent a morphologically heterogeneous class of tumours and some entities lack defining histopathological features. Therefore, the diagnosis of sarcomas is burdened with a high inter-observer variability and misclassification rate. Here, we demonstrate classification of soft tissue and bone tumours using a machine learning classifier algorithm based on array-generated DNA methylation data. This sarcoma classifier is trained using a dataset of 1077 methylation profiles from comprehensively pre-characterized cases comprising 62 tumour methylation classes constituting a broad range of soft tissue and bone sarcoma subtypes across the entire age spectrum. The performance is validated in a cohort of 428 sarcomatous tumours, of which 322 cases were classified by the sarcoma classifier. Our results demonstrate the potential of the DNA methylation-based sarcoma classification for research and future diagnostic applications.


Pik3ca mutations significantly enhance the growth of SHH medulloblastoma and lead to metastatic tumour growth in a novel mouse model.

  • Judith Niesen‎ et al.
  • Cancer letters‎
  • 2020‎

Medulloblastoma (MB) is the most frequent malignant brain tumour in children with a poor outcome. Divided into four molecular subgroups, MB of the Sonic hedgehog (SHH) subgroup accounts for approximately 25% of the cases and is driven by mutations within components of the SHH pathway, such as its receptors PTCH1 or SMO. A fraction of these cases additionally harbour PIK3CA mutations, the relevance of which is so far unknown. To unravel the role of Pik3ca mutations alone or in combination with a constitutively activated SHH signalling pathway, transgenic mice were used. These mice show mutated variants within Smo, Ptch1 or Pik3ca genes in cerebellar granule neuron precursors, which represent the cellular origin of SHH MB. Our results show that Pik3ca mutations alone are insufficient to cause developmental alterations or to initiate MB. However, they significantly accelerate the growth of Shh MB, induce tumour spread throughout the cerebrospinal fluid, and result in lower survival rates of mice with a double Pik3caH1047R/SmoM2 or Pik3caH1047R/Ptch1 mutation. Therefore, PIK3CA mutations in SHH MB may represent a therapeutic target for first and second line combination treatments.


EGFRvIII upregulates DNA mismatch repair resulting in increased temozolomide sensitivity of MGMT promoter methylated glioblastoma.

  • Nina Struve‎ et al.
  • Oncogene‎
  • 2020‎

The oncogene epidermal growth factor receptor variant III (EGFRvIII) is frequently expressed in glioblastomas (GBM) but its impact on therapy response is still under controversial debate. Here we wanted to test if EGFRvIII influences the sensitivity towards the alkylating agent temozolomide (TMZ). Therefore, we retrospectively analyzed the survival of 336 GBM patients, demonstrating that under standard treatment, which includes TMZ, EGFRvIII expression is associated with prolonged survival, but only in patients with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylated tumors. Using isogenic GBM cell lines with endogenous EGFRvIII expression we could demonstrate that EGFRvIII increases TMZ sensitivity and results in enhanced numbers of DNA double-strand breaks and a pronounced S/G2-phase arrest after TMZ treatment. We observed a higher expression of DNA mismatch repair (MMR) proteins in EGFRvIII+ cells and patient tumor samples, which was most pronounced for MSH2 and MSH6. EGFRvIII-specific knockdown reduced MMR protein expression thereby increasing TMZ resistance. Subsequent functional kinome profiling revealed an increased activation of p38- and ERK1/2-dependent signaling in EGFRvIII expressing cells, which regulates MMR protein expression downstream of EGFRvIII. In summary, our results demonstrate that the oncoprotein EGFRvIII sensitizes a fraction of GBM to current standard of care treatment through the upregulation of DNA MMR.


CDEGenerator: an online platform to learn from existing data models to build model registries.

  • Julian Varghese‎ et al.
  • Clinical epidemiology‎
  • 2018‎

Best-practice data models harmonize semantics and data structure of medical variables in clinical or epidemiological studies. While there exist several published data sets, it remains challenging to find and reuse published eligibility criteria or other data items that match specific needs of a newly planned study or registry. A novel Internet-based method for rapid comparison of published data models was implemented to enable reuse, customization, and harmonization of item catalogs for the early planning and development phase of research databases.


Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial neuroepithelial tumors.

  • Philipp Sievers‎ et al.
  • Acta neuropathologica‎
  • 2021‎

Ependymomas encompass a heterogeneous group of central nervous system (CNS) neoplasms that occur along the entire neuroaxis. In recent years, extensive (epi-)genomic profiling efforts have identified several molecular groups of ependymoma that are characterized by distinct molecular alterations and/or patterns. Based on unsupervised visualization of a large cohort of genome-wide DNA methylation data, we identified a highly distinct group of pediatric-type tumors (n = 40) forming a cluster separate from all established CNS tumor types, of which a high proportion were histopathologically diagnosed as ependymoma. RNA sequencing revealed recurrent fusions involving the pleomorphic adenoma gene-like 1 (PLAGL1) gene in 19 of 20 of the samples analyzed, with the most common fusion being EWSR1:PLAGL1 (n = 13). Five tumors showed a PLAGL1:FOXO1 fusion and one a PLAGL1:EP300 fusion. High transcript levels of PLAGL1 were noted in these tumors, with concurrent overexpression of the imprinted genes H19 and IGF2, which are regulated by PLAGL1. Histopathological review of cases with sufficient material (n = 16) demonstrated a broad morphological spectrum of tumors with predominant ependymoma-like features. Immunohistochemically, tumors were GFAP positive and OLIG2- and SOX10 negative. In 3/16 of the cases, a dot-like positivity for EMA was detected. All tumors in our series were located in the supratentorial compartment. Median age of the patients at the time of diagnosis was 6.2 years. Median progression-free survival was 35 months (for 11 patients with data available). In summary, our findings suggest the existence of a novel group of supratentorial neuroepithelial tumors that are characterized by recurrent PLAGL1 fusions and enriched for pediatric patients.


Multiomic neuropathology improves diagnostic accuracy in pediatric neuro-oncology.

  • Dominik Sturm‎ et al.
  • Nature medicine‎
  • 2023‎

The large diversity of central nervous system (CNS) tumor types in children and adolescents results in disparate patient outcomes and renders accurate diagnosis challenging. In this study, we prospectively integrated DNA methylation profiling and targeted gene panel sequencing with blinded neuropathological reference diagnostics for a population-based cohort of more than 1,200 newly diagnosed pediatric patients with CNS tumors, to assess their utility in routine neuropathology. We show that the multi-omic integration increased diagnostic accuracy in a substantial proportion of patients through annotation to a refining DNA methylation class (50%), detection of diagnostic or therapeutically relevant genetic alterations (47%) or identification of cancer predisposition syndromes (10%). Discrepant results by neuropathological WHO-based and DNA methylation-based classification (30%) were enriched in histological high-grade gliomas, implicating relevance for current clinical patient management in 5% of all patients. Follow-up (median 2.5 years) suggests improved survival for patients with histological high-grade gliomas displaying lower-grade molecular profiles. These results provide preliminary evidence of the utility of integrating multi-omics in neuropathology for pediatric neuro-oncology.


Comprehensive profiling of myxopapillary ependymomas identifies a distinct molecular subtype with relapsing disease.

  • Michael Bockmayr‎ et al.
  • Neuro-oncology‎
  • 2022‎

Myxopapillary ependymoma (MPE) is a heterogeneous disease regarding histopathology and outcome. The underlying molecular biology is poorly understood, and markers that reliably predict the patients' clinical course are unknown.


clevRvis: visualization techniques for clonal evolution.

  • Sarah Sandmann‎ et al.
  • GigaScience‎
  • 2022‎

A thorough analysis of clonal evolution commonly requires integration of diverse sources of data (e.g., karyotyping, next-generation sequencing, and clinical information). Subsequent to actual reconstruction of clonal evolution, detailed analysis and interpretation of the results are essential. Often, however, only few tumor samples per patient are available. Thus, information on clonal development and therapy effect may be incomplete. Furthermore, analysis of biallelic events-considered of high relevance with respect to disease course-can commonly only be realized by time-consuming analysis of the raw results and even raw sequencing data.


Identification of low and very high-risk patients with non-WNT/non-SHH medulloblastoma by improved clinico-molecular stratification of the HIT2000 and I-HIT-MED cohorts.

  • Martin Mynarek‎ et al.
  • Acta neuropathologica‎
  • 2023‎

Molecular groups of medulloblastoma (MB) are well established. Novel risk stratification parameters include Group 3/4 (non-WNT/non-SHH) methylation subgroups I-VIII or whole-chromosomal aberration (WCA) phenotypes. This study investigates the integration of clinical and molecular parameters to improve risk stratification of non-WNT/non-SHH MB. Non-WNT/non-SHH MB from the HIT2000 study and the HIT-MED registries were selected based on availability of DNA-methylation profiling data. MYC or MYCN amplification and WCA of chromosomes 7, 8, and 11 were inferred from methylation array-based copy number profiles. In total, 403 non-WNT/non-SHH MB were identified, 346/403 (86%) had a methylation class family Group 3/4 methylation score (classifier v11b6) ≥ 0.9, and 294/346 (73%) were included in the risk stratification modeling based on Group 3 or 4 score (v11b6) ≥ 0.8 and subgroup I-VIII score (mb_g34) ≥ 0.8. Group 3 MB (5y-PFS, survival estimation ± standard deviation: 41.4 ± 4.6%; 5y-OS: 48.8 ± 5.0%) showed poorer survival compared to Group 4 (5y-PFS: 68.2 ± 3.7%; 5y-OS: 84.8 ± 2.8%). Subgroups II (5y-PFS: 27.6 ± 8.2%) and III (5y-PFS: 37.5 ± 7.9%) showed the poorest and subgroup VI (5y-PFS: 76.6 ± 7.9%), VII (5y-PFS: 75.9 ± 7.2%), and VIII (5y-PFS: 66.6 ± 5.8%) the best survival. Multivariate analysis revealed subgroup in combination with WCA phenotype to best predict risk of progression and death. The integration of clinical (age, M and R status) and molecular (MYC/N, subgroup, WCA phenotype) variables identified a low-risk stratum with a 5y-PFS of 94 ± 5.7 and a very high-risk stratum with a 5y-PFS of 29 ± 6.1%. Validation in an international MB cohort confirmed the combined stratification scheme with 82.1 ± 6.0% 5y-PFS in the low and 47.5 ± 4.1% in very high-risk groups, and outperformed the clinical model. These newly identified clinico-molecular low-risk and very high-risk strata, accounting for 6%, and 21% of non-WNT/non-SHH MB patients, respectively, may improve future treatment stratification.


Recurrent atypical teratoid/rhabdoid tumors (AT/RT) reveal discrete features of progression on histology, epigenetics, copy number profiling, and transcriptomics.

  • Pascal D Johann‎ et al.
  • Acta neuropathologica‎
  • 2023‎

Atypical teratoid/rhabdoid tumors (AT/RT) are the most common malignant brain tumors manifesting in infancy. They split into four molecular types. The major three (AT/RT-SHH, AT/RT-TYR, and AT/RT-MYC) all carry mutations in SMARCB1, the fourth quantitatively smaller type is characterized by SMARCA4 mutations (AT/RT-SMARCA4). Molecular characteristics of disease recurrence or metastatic spread, which go along with a particularly dismal outcome, are currently unclear. Here, we investigated tumor tissue from 26 patients affected by AT/RT to identify signatures of recurrences in comparison with matched primary tumor samples. Microscopically, AT/RT recurrences demonstrated a loss of architecture and significantly enhanced mitotic activity as compared to their related primary tumors. Based on DNA methylation profiling, primary tumor and related recurrence were grossly similar, but three out of 26 tumors belonged to a different molecular type or subtype after second surgery compared to related primary lesions. Copy number variations (CNVs) differed in six cases, showing novel gains on chromosome 1q or losses of chromosome 10 in recurrences as the most frequent alterations. To consolidate these observations, our cohort was combined with a data set of unmatched primary and recurrent AT/RT, which demonstrated chromosome 1q gain and 10 loss in 18% (n = 7) and 11% (n = 4) of the recurrences (n = 38) as compared to 7% (n = 3) and 0% (n = 0) in the primary tumors (n = 44), respectively. Similar to the observations made by DNA methylation profiling, RNA sequencing of our cohort revealed AT/RT primary tumors and matched recurrences clustering closely together. However, a number of genes showed significantly altered expression in AT/RT-SHH recurrences. Many of them are known tumor driving growth factors, involved in embryonal development and tumorigenesis, or are cell-cycle-associated. Overall, our work identifies subtle molecular changes that occur in the course of the disease and that may help define novel therapeutic targets for AT/RT recurrences.


Knockout of the Cardiac Transcription Factor NKX2-5 Results in Stem Cell-Derived Cardiac Cells with Typical Purkinje Cell-like Signal Transduction and Extracellular Matrix Formation.

  • Paul Disse‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

The human heart controls blood flow, and therewith enables the adequate supply of oxygen and nutrients to the body. The correct function of the heart is coordinated by the interplay of different cardiac cell types. Thereby, one can distinguish between cells of the working myocardium, the pace-making cells in the sinoatrial node (SAN) and the conduction system cells in the AV-node, the His-bundle or the Purkinje fibres. Tissue-engineering approaches aim to generate hiPSC-derived cardiac tissues for disease modelling and therapeutic usage with a significant improvement in the differentiation quality of myocardium and pace-making cells. The differentiation of cells with cardiac conduction system properties is still challenging, and the produced cell mass and quality is poor. Here, we describe the generation of cardiac cells with properties of the cardiac conduction system, called conduction system-like cells (CSLC). As a primary approach, we introduced a CrispR-Cas9-directed knockout of the NKX2-5 gene in hiPSC. NKX2-5-deficient hiPSC showed altered connexin expression patterns characteristic for the cardiac conduction system with strong connexin 40 and connexin 43 expression and suppressed connexin 45 expression. Application of differentiation protocols for ventricular- or SAN-like cells could not reverse this connexin expression pattern, indicating a stable regulation by NKX2-5 on connexin expression. The contraction behaviour of the hiPSC-derived CSLCs was compared to hiPSC-derived ventricular- and SAN-like cells. We found that the contraction speed of CSLCs resembled the expected contraction rate of human conduction system cells. Overall contraction was reduced in differentiated cells derived from NKX2-5 knockout hiPSC. Comparative transcriptomic data suggest a specification of the cardiac subtype of CSLC that is distinctly different from ventricular or pacemaker-like cells with reduced myocardial gene expression and enhanced extracellular matrix formation for improved electrical insulation. In summary, knockout of NKX2-5 in hiPSC leads to enhanced differentiation of cells with cardiac conduction system features, including connexin expression and contraction behaviour.


Epigenetic neural glioblastoma enhances synaptic integration and predicts therapeutic vulnerability.

  • Richard Drexler‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is nascent. We present an epigenetically defined neural signature of glioblastoma that independently affects patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals high abundance of stem cell-like malignant cells classified as oligodendrocyte precursor and neural precursor cell-like in high-neural glioblastoma. High-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature associates with decreased survival as well as increased functional connectivity and can be detected via DNA analytes and brain-derived neurotrophic factor in plasma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant.


Machine Learning in the Parkinson's disease smartwatch (PADS) dataset.

  • Julian Varghese‎ et al.
  • NPJ Parkinson's disease‎
  • 2024‎

The utilisation of smart devices, such as smartwatches and smartphones, in the field of movement disorders research has gained significant attention. However, the absence of a comprehensive dataset with movement data and clinical annotations, encompassing a wide range of movement disorders including Parkinson's disease (PD) and its differential diagnoses (DD), presents a significant gap. The availability of such a dataset is crucial for the development of reliable machine learning (ML) models on smart devices, enabling the detection of diseases and monitoring of treatment efficacy in a home-based setting. We conducted a three-year cross-sectional study at a large tertiary care hospital. A multi-modal smartphone app integrated electronic questionnaires and smartwatch measures during an interactive assessment designed by neurologists to provoke subtle changes in movement pathologies. We captured over 5000 clinical assessment steps from 504 participants, including PD, DD, and healthy controls (HC). After age-matching, an integrative ML approach combining classical signal processing and advanced deep learning techniques was implemented and cross-validated. The models achieved an average balanced accuracy of 91.16% in the classification PD vs. HC, while PD vs. DD scored 72.42%. The numbers suggest promising performance while distinguishing similar disorders remains challenging. The extensive annotations, including details on demographics, medical history, symptoms, and movement steps, provide a comprehensive database to ML techniques and encourage further investigations into phenotypical biomarkers related to movement disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: