Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

The generation of tetrahedral mesh models for neuroanatomical MRI.

  • Carl Lederman‎ et al.
  • NeuroImage‎
  • 2011‎

In this article, we describe a detailed method for automatically generating tetrahedral meshes from 3D images having multiple region labels. An adaptively sized tetrahedral mesh modeling approach is described that is capable of producing meshes conforming precisely to the voxelized regions in the image. Efficient tetrahedral mesh improvement is then performed minimizing an energy function containing three terms: a smoothing term to remove the voxelization, a fidelity term to maintain continuity with the image data, and a novel elasticity term to prevent the tetrahedra from becoming flattened or inverted as the mesh deforms while allowing the voxelization to be removed entirely. The meshing algorithm is applied to structural MR image data that has been automatically segmented into 56 neuroanatomical sub-divisions as well as on two other examples. The resulting tetrahedral representation has several desirable properties such as tetrahedra with dihedral angles away from 0 and 180 degrees, smoothness, and a high resolution. Tetrahedral modeling via the approach described here has applications in modeling brain structure in normal as well as diseased brain in human and non-human data and facilitates examination of 3D object deformations resulting from neurological illness (e.g. Alzheimer's disease), development, and/or aging.


Source cancellation profiles of electroencephalography and magnetoencephalography.

  • Andrei Irimia‎ et al.
  • NeuroImage‎
  • 2012‎

Recorded electric potentials and magnetic fields due to cortical electrical activity have spatial spread even if their underlying brain sources are focal. Consequently, as a result of source cancellation, loss in signal amplitude and reduction in the effective signal-to-noise ratio can be expected when distributed sources are active simultaneously. Here we investigate the cancellation effects of EEG and MEG through the use of an anatomically correct forward model based on structural MRI acquired from 7 healthy adults. A boundary element model (BEM) with four compartments (brain, cerebrospinal fluid, skull and scalp) and highly accurate cortical meshes (~300,000 vertices) were generated. Distributed source activations were simulated using contiguous patches of active dipoles. To investigate cancellation effects in both EEG and MEG, quantitative indices were defined (source enhancement, cortical orientation disparity) and computed for varying values of the patch radius as well as for automatically parcellated gyri and sulci. Results were calculated for each cortical location, averaged over all subjects using a probabilistic atlas, and quantitatively compared between MEG and EEG. As expected, MEG sensors were found to be maximally sensitive to signals due to sources tangential to the scalp, and minimally sensitive to radial sources. Compared to EEG, however, MEG was found to be much more sensitive to signals generated antero-medially, notably in the anterior cingulate gyrus. Given that sources of activation cancel each other according to the orientation disparity of the cortex, this study provides useful methods and results for quantifying the effect of source orientation disparity upon source cancellation.


Interactive exploration of neuroanatomical meta-spaces.

  • Shantanu H Joshi‎ et al.
  • Frontiers in neuroinformatics‎
  • 2009‎

Large-archives of neuroimaging data present many opportunities for re-analysis and mining that can lead to new findings of use in basic research or in the characterization of clinical syndromes. However, interaction with such archives tends to be driven textually, based on subject or image volume meta-data, not the actual neuroanatomical morphology itself, for which the imaging was performed to measure. What is needed is a content-driven approach for examining not only the image content itself but to explore brains that are anatomically similar, and identifying patterns embedded within entire sets of neuroimaging data. With the aim of visual navigation of large- scale neurodatabases, we introduce the concept of brain meta-spaces. The meta-space encodes pair-wise dissimilarities between all individuals in a population and shows the relationships between brains as a navigable framework for exploration. We employ multidimensional scaling (MDS) to implement meta-space processing for a new coordinate system that distributes all data points (brain surfaces) in a common frame-of-reference, with anatomically similar brain data located near each other. To navigate within this derived meta-space, we have developed a fully interactive 3D visualization environment that allows users to examine hundreds of brains simultaneously, visualize clusters of brains with similar characteristics, zoom in on particular instances, and examine the surface topology of an individual brain's surface in detail. The visualization environment not only displays the dissimilarities between brains, but also renders complete surface representations of individual brain structures, allowing an instant 3D view of the anatomies, as well as their differences. The data processing is implemented in a grid-based setting using the LONI Pipeline workflow environment. Additionally users can specify a range of baseline brain atlas spaces as the underlying scale for comparative analyses. The novelty in our approach lies in the user ability to simultaneously view and interact with many brains at once but doing so in a vast meta-space that encodes (dis) similarity in morphometry. We believe that the concept of brain meta-spaces has important implications for the future of how users interact with large-scale archives of primary neuroimaging data.


Alcohol-induced suppression of BOLD activity during goal-directed visuomotor performance.

  • John Darrell Van Horn‎ et al.
  • NeuroImage‎
  • 2006‎

The neurophysiological influence of alcohol produces deficits of many cognitive functions, including executive and motor control processes. This study examined the acute effects of alcohol in the context of goal-directed visuomotor performance during functional magnetic resonance imaging (fMRI). Subjects consumed alcohol-laced gelatin during one scan session and non-alcoholic placebo gelatin in another. During each session, subjects performed a visuomotor target capture where they received continuous or terminal positional feedback information. Blood-oxygen level-dependent (BOLD) activity in the cerebellum was suppressed in the presence of alcohol, consistent with the known ethanol sensitivity of the cerebellum. A fronto-parietal network was identified as most affected by alcohol consumption, with differential patterns of BOLD contingent on visual feedback. Results indicate that alcohol selectively suppresses cognitive activity in frontal and posterior parietal brain regions that, in conjunction with cerebellar nuclei, are believed to contribute to the formation of internal cognitive models of motor representation and action.


Increased perivascular space volume in white matter and basal ganglia is associated with cognition in Parkinson's Disease.

  • Erin Kaye Donahue‎ et al.
  • Brain imaging and behavior‎
  • 2024‎

Perivascular spaces (PVS), fluid-filled compartments surrounding brain vasculature, are an essential component of the glymphatic system responsible for transport of waste and nutrients. Glymphatic system impairment may underlie cognitive deficits in Parkinson's disease (PD). Studies have focused on the role of basal ganglia PVS with cognition in PD, but the role of white matter PVS is unknown. This study examined the relationship of white matter and basal ganglia PVS with domain-specific and global cognition in individuals with PD. Fifty individuals with PD underwent 3T T1w magnetic resonance imaging (MRI) to determine PVS volume fraction, defined as PVS volume normalized to total regional volume, within (i) centrum semiovale, (ii) prefrontal white matter (medial orbitofrontal, rostral middle frontal, superior frontal), and (iii) basal ganglia. A neuropsychological battery included assessment of global cognitive function (Montreal Cognitive Assessment, and global cognitive composite score), and cognitive-specific domains (executive function, memory, visuospatial function, attention, and language). Higher white matter rostral middle frontal PVS was associated with lower scores in both global cognitive and visuospatial function. In the basal ganglia higher PVS was associated with lower scores for memory with a trend towards lower global cognitive composite score. While previous reports have shown that greater amount of PVS in the basal ganglia is associated with decline in global cognition in PD, our findings suggest that increased white matter PVS volume may also underlie changes in cognition.


The DTI connectivity of the human claustrum.

  • Carinna M Torgerson‎ et al.
  • Human brain mapping‎
  • 2015‎

The origin, structure, and function of the claustrum, as well as its role in neural computation, have remained a mystery since its discovery in the 17th century. Assessing the in vivo connectivity of the claustrum may bring forth useful insights with relevance to model the overall functionality of the claustrum itself. Using structural and diffusion tensor neuroimaging in N = 100 healthy subjects, we found that the claustrum has the highest connectivity in the brain by regional volume. Network theoretical analyses revealed that (a) the claustrum is a primary contributor to global brain network architecture, and that (b) significant connectivity dependencies exist between the claustrum, frontal lobe, and cingulate regions. These results illustrate that the claustrum is ideally located within the human central nervous system (CNS) connectome to serve as the putative "gate keeper" of neural information for consciousness awareness. Our findings support and underscore prior theoretical contributions about the involvement of the claustrum in higher cognitive function and its relevance in devastating neurological disease.


Study factors influencing ventricular enlargement in schizophrenia: a 20 year follow-up meta-analysis.

  • Angelo Sayo‎ et al.
  • NeuroImage‎
  • 2012‎

A meta-analysis was performed on studies employing the ventricular-brain ratio to compare schizophrenic subjects to that of normal controls. This was a follow-up to a similar meta-analysis published in 1992 in which study-, in addition to clinical-, factors were found to contribute significantly to the reported difference between patients with schizophrenia and controls. Seventy-two (N=72) total studies were identified from the peer reviewed literature, 39 from the original meta-analysis, and 33 additional studies published since which met strict criteria for inclusion and analysis - thus representing ~30 years of schizophrenia ventricular enlargement research. Sample characteristics from schizophrenics and controls were coded for use as predictor variables against within sample VBR values as well as for between sample VBR differences. Additionally, a number of factors concerning how the studies were conducted and reported were also coded. Obtained data was subjected to unweighted univariate as well as multiple regression analyses. In particular, results indicated significant differences between schizophrenics and controls in ventricular size but also the influence of the diagnostic criteria used to define schizophrenia on the magnitude of the reported VBR. This suggests that differing factors of the diagnostic criteria may be sensitive to ventricular enlargement and might be worthy of further examination. Interestingly, we observed an inverse relationship between VBR difference and the number of co-authors on the study. This latter finding suggests that larger research groups report smaller VBR differences and may be more conservative or exacting in their research methodology. Analyses weighted by sample size provided identical conclusions. The effects of study factors such as these are helpful for understanding the variation in the size of the reported differences in VBR between patients and controls as well as for understanding the evolution of research on complex clinical syndromes employing neuroimaging morphometrics.


Mapping connectivity damage in the case of Phineas Gage.

  • John Darrell Van Horn‎ et al.
  • PloS one‎
  • 2012‎

White matter (WM) mapping of the human brain using neuroimaging techniques has gained considerable interest in the neuroscience community. Using diffusion weighted (DWI) and magnetic resonance imaging (MRI), WM fiber pathways between brain regions may be systematically assessed to make inferences concerning their role in normal brain function, influence on behavior, as well as concerning the consequences of network-level brain damage. In this paper, we investigate the detailed connectomics in a noted example of severe traumatic brain injury (TBI) which has proved important to and controversial in the history of neuroscience. We model the WM damage in the notable case of Phineas P. Gage, in whom a "tamping iron" was accidentally shot through his skull and brain, resulting in profound behavioral changes. The specific effects of this injury on Mr. Gage's WM connectivity have not previously been considered in detail. Using computed tomography (CT) image data of the Gage skull in conjunction with modern anatomical MRI and diffusion imaging data obtained in contemporary right handed male subjects (aged 25-36), we computationally simulate the passage of the iron through the skull on the basis of reported and observed skull fiducial landmarks and assess the extent of cortical gray matter (GM) and WM damage. Specifically, we find that while considerable damage was, indeed, localized to the left frontal cortex, the impact on measures of network connectedness between directly affected and other brain areas was profound, widespread, and a probable contributor to both the reported acute as well as long-term behavioral changes. Yet, while significantly affecting several likely network hubs, damage to Mr. Gage's WM network may not have been more severe than expected from that of a similarly sized "average" brain lesion. These results provide new insight into the remarkable brain injury experienced by this noteworthy patient.


Is it time to re-prioritize neuroimaging databases and digital repositories?

  • John Darrell Van Horn‎ et al.
  • NeuroImage‎
  • 2009‎

The development of in vivo brain imaging has lead to the collection of large quantities of digital information. In any individual research article, several tens of gigabytes-worth of data may be represented-collected across normal and patient samples. With the ease of collecting such data, there is increased desire for brain imaging datasets to be openly shared through sophisticated databases. However, very often the raw and pre-processed versions of these data are not available to researchers outside of the team that collected them. A range of neuroimaging databasing approaches has streamlined the transmission, storage, and dissemination of data from such brain imaging studies. Though early sociological and technical concerns have been addressed, they have not been ameliorated altogether for many in the field. In this article, we review the progress made in neuroimaging databases, their role in data sharing, data management, potential for the construction of brain atlases, recording data provenance, and value for re-analysis, new publication, and training. We feature the LONI IDA as an example of an archive being used as a source for brain atlas workflow construction, list several instances of other successful uses of image databases, and comment on archive sustainability. Finally, we suggest that, given these developments, now is the time for the neuroimaging community to re-prioritize large-scale databases as a valuable component of brain imaging science.


Why share data? Lessons learned from the fMRIDC.

  • John Darrell Van Horn‎ et al.
  • NeuroImage‎
  • 2013‎

Neuroimaging and the discipline of cognitive neuroscience have grown together in lock-step with each pushing the other toward an improved ability to explore and examine brain function and form. However successful neuroimaging and the examination of cognitive processes may seem today, the culture of data sharing in these fields remains underdeveloped. In this article, we discuss our own experience in the development of the fMRI Data Center (fMRIDC) - a large-scale effort to gather, curate, and openly share the complete data sets from published research articles of brain activation studies using fMRI. We outline the fMRIDC effort's beginnings, how it operated, note some of the sociological reactions we received, and provide several examples of prominent new studies performed using data drawn from the archive. Finally, we provide comment on what considerations are needed for successful neuroimaging databasing and data sharing as existing and emerging efforts take the next steps in archiving and disseminating the field's valuable and irreplaceable data.


Phenotypic and Genetic Correlations Between the Lobar Segments of the Inferior Fronto-occipital Fasciculus and Attention.

  • Yuan Leng‎ et al.
  • Scientific reports‎
  • 2016‎

Attention deficits may present dysfunctions in any one or two components of attention (alerting, orienting, and executive control (EC)). However, these various forms of attention deficits generally have abnormal microstructure integrity of inferior fronto-occipital fasciculus (IFOF). In this work, we aim to deeply explore: (1) associations between microstructure integrities of IFOF (including frontal, parietal, temporal, occipital, and insular segments) and attention by means of structural equation models and multiple regression analyses; (2) genetic/environmental effects on IFOF, attention, and their correlations using bivariate genetic analysis. EC function was attributed to the fractional anisotropy (FA) of left (correlation was driven by genetic and environmental factors) and right IFOF (correlation was driven by environmental factors), especially to left frontal part and right occipital part (correlation was driven by genetic factors). Alerting was associated with FA in parietal and insular parts of left IFOF. No significant correlation was found between orienting and IFOF. This study revealed the advantages of lobar-segmental analysis in structure-function correlation study and provided the anatomical basis for kinds of attention deficits. The common genetic/environmental factors implicated in the certain correlations suggested the common physiological mechanisms for two traits, which should promote the discovery of single-nucleotide polymorphisms affecting IFOF and attention.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: