Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 900 papers

Diagnosis and prognosis of neutrophil gelatinase-associated lipocalin for acute kidney injury with sepsis: a systematic review and meta-analysis.

  • An Zhang‎ et al.
  • Critical care (London, England)‎
  • 2016‎

Neutrophil gelatinase-associated lipocalin (NGAL) has been identified as an early biomarker for prediction of acute kidney injury (AKI). However, the utility of NGAL to predict the occurrence of AKI in septic patients remains controversial. We performed a systematic review and meta-analysis to evaluate the evidence on diagnosis of sepsis AKI and the prediction of other clinical outcomes.


Exogenous BDNF increases neurogenesis in the hippocampus in experimental Streptococcus pneumoniae meningitis.

  • Di Lian‎ et al.
  • Journal of neuroimmunology‎
  • 2016‎

Despite the effective use of antibiotics, occurrences of mortality and neurological sequelae following Streptococcus pneumoniae meningitis remain high.


Potential diagnostic value of serum/pleural fluid IL-31 levels for tuberculous pleural effusion.

  • Yan Gao‎ et al.
  • Scientific reports‎
  • 2016‎

The aim of this study was to explore the diagnostic value of IL-31 levels in the pleural fluid and plasma to differentially diagnose tuberculous and malignant pleural effusion. We enrolled 91 cases, including tuberculous pleural effusion (TPE, n = 50), malignant pleural effusion (MPE, n = 41), other cases including pneumonia with pleural fluid, pulmonary tuberculosis and healthy people as controls. Whole blood was stimulated with the M. tuberculosis-specific antigens and plasma was collected. The multiplex bead-based cytokine immunoassay was employed to measure the levels of various cytokines. IL-31 was found to be the most prominent cytokine (P < 0.0001), and with an optimal cut-off value of 67.5 pg/mL, the sensitivity and specificity for the diagnosis of TPE were 86% and 100%, respectively. Furthermore, the tuberculosis-specific IL-31 levels in the plasma of TPE patients were higher than that of MPE patients (P = 0.0002). At an optimal cut-off value of 23.9 pg/mL, the sensitivity and specificity for the diagnosis of TPE were 92.9% and 85.7%, respectively. Ultimately, the combination of pleural fluid with the plasma tuberculosis-specific IL-31 levels improved the sensitivity and specificity to 94.0% and 95.1%, respectively. Thus, we identified a novel biomarker for the diagnosis of TPE for clinical application.


Spin-Dependent Transport in Fe/GaAs(100)/Fe Vertical Spin-Valves.

  • P K Johnny Wong‎ et al.
  • Scientific reports‎
  • 2016‎

The integration of magnetic materials with semiconductors will lead to the development of the next spintronics devices such as spin field effect transistor (SFET), which is capable of both data storage and processing. While the fabrication and transport studies of lateral SFET have attracted greatly attentions, there are only few studies of vertical devices, which may offer the opportunity for the future three-dimensional integration. Here, we provide evidence of two-terminal electrical spin injection and detection in Fe/GaAs/Fe vertical spin-valves (SVs) with the GaAs layer of 50 nanometers thick and top and bottom Fe electrodes deposited by molecular beam epitaxy. The spin-valve effect, which corresponds to the individual switching of the top and bottom Fe layers, is bias dependent and observed up to 20 K. We propose that the strongly bias- and temperature-dependent MR is associated with spin transport at the interfacial Fe/GaAs Schottky contacts and in the GaAs membranes, where balance between the barrier profiles as well as the dwell time to spin lifetime ratio are crucial factors for determining the device operations. The demonstration of the fabrication and spin injection in the vertical SV with a semiconductor interlayer is expected to open a new avenue in exploring the SFET.


Comprehensive analysis and discovery of drought-related NAC transcription factors in common bean.

  • Jing Wu‎ et al.
  • BMC plant biology‎
  • 2016‎

Common bean (Phaseolus vulgaris L.) is an important warm-season food legume. Drought is the most important environmental stress factor affecting large areas of common bean via plant death or reduced global production. The NAM, ATAF1/2 and CUC2 (NAC) domain protein family are classic transcription factors (TFs) involved in a variety of abiotic stresses, particularly drought stress. However, the NAC TFs in common bean have not been characterized.


Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis.

  • Vijay Ramaswamy‎ et al.
  • Journal of clinical oncology : official journal of the American Society of Clinical Oncology‎
  • 2016‎

Posterior fossa ependymoma comprises two distinct molecular variants termed EPN_PFA and EPN_PFB that have a distinct biology and natural history. The therapeutic value of cytoreductive surgery and radiation therapy for posterior fossa ependymoma after accounting for molecular subgroup is not known.


Identification of a novel SBF2 frameshift mutation in charcot-marie-tooth disease type 4B2 using whole-exome sequencing.

  • Meiyan Chen‎ et al.
  • Genomics, proteomics & bioinformatics‎
  • 2014‎

Charcot-Marie-Tooth disease type 4B2 with early-onset glaucoma (CMT4B2, OMIM 604563) is a genetically-heterogeneous childhood-onset neuromuscular disorder. Here, we report the case of a 15-year-old male adolescent with lower extremity weakness, gait abnormalities, foot deformities and early-onset glaucoma. Since clinical diagnosis alone was insufficient for providing pathogenetic evidence to indicate that the condition belonged to a consanguineous family, we applied whole-exome sequencing to samples from the patient, his parents and his younger brother, assuming that the patient's condition is transmitted in an autosomal recessive pattern. A frame-shift mutation, c.4571delG (P.Gly1524Glufs∗42), was revealed in the CMT4B2-related gene SBF2 (also known as MTMR13, MIM 607697), and this mutation was found to be homozygous in the proband and heterozygous in his parents and younger brother. Together with the results of clinical diagnosis, this case was diagnosed as CMT4B2. Our finding further demonstrates the use of whole-exome sequencing in the diagnosis and treatment of rare diseases.


AIP1 acts with cofilin to control actin dynamics during epithelial morphogenesis.

  • Dandan Chu‎ et al.
  • Development (Cambridge, England)‎
  • 2012‎

During epithelial morphogenesis, cells not only maintain tight adhesion for epithelial integrity but also allow dynamic intercellular movement to take place within cell sheets. How these seemingly opposing processes are coordinated is not well understood. Here, we report that the actin disassembly factors AIP1 and cofilin are required for remodeling of adherens junctions (AJs) during ommatidial precluster formation in Drosophila eye epithelium, a highly stereotyped cell rearrangement process which we describe in detail in our live imaging study. AIP1 is enriched together with F-actin in the apical region of preclusters, whereas cofilin displays a diffuse and uniform localization pattern. Cofilin overexpression completely rescues AJ remodeling defects caused by AIP1 loss of function, and cofilin physically interacts with AIP1. Pharmacological reduction of actin turnover results in similar AJ remodeling defects and decreased turnover of E-cadherin, which also results from AIP1 deficiency, whereas an F-actin-destabilizing drug affects AJ maintenance and epithelial integrity. Together with other data on actin polymerization, our results suggest that AIP1 enhances cofilin-mediated actin disassembly in the apical region of precluster cells to promote remodeling of AJs and thus intercellular movement, but also that robust actin polymerization promotes AJ general adhesion and integrity during the remodeling process.


Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses.

  • Lina Zhao‎ et al.
  • The Journal of physiology‎
  • 2015‎

Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle microvascular recruitment. We demonstrated that a high-fat diet induces vascular adiponectin and insulin resistance but globular adiponectin administration can restore vascular insulin responses and improve insulin's metabolic action via an AMPK- and nitric oxide-dependent mechanism. This suggests that globular adiponectin might have a therapeutic potential for improving insulin resistance and preventing cardiovascular complications in patients with diabetes via modulation of microvascular insulin responses. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague-Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by ∼60%. However, supplementing gAd fully rescued insulin's microvascular action and significantly improved the metabolic responses to insulin in HFD male rats and these actions were abolished by inhibition of either AMPK or nitric oxide production. We conclude that HFD induces vascular adiponectin and insulin resistance but gAd administration can restore vascular insulin responses and improve insulin's metabolic action via an AMPK- and nitric oxide-dependent mechanism in male rats.


Donkey genome and insight into the imprinting of fast karyotype evolution.

  • Jinlong Huang‎ et al.
  • Scientific reports‎
  • 2015‎

The donkey, like the horse, is a promising model for exploring karyotypic instability. We report the de novo whole-genome assemblies of the donkey and the Asiatic wild ass. Our results reflect the distinct characteristics of donkeys, including more effective energy metabolism and better immunity than horses. The donkey shows a steady demographic trajectory. We detected abundant satellite sequences in some inactive centromere regions but not in neocentromere regions, while ribosomal RNAs frequently emerged in neocentromere regions but not in the obsolete centromere regions. Expanded miRNA families and five newly discovered miRNA target genes involved in meiosis may be associated with fast karyotype evolution. APC/C, controlling sister chromatid segregation, cytokinesis, and the establishment of the G1 cell cycle phase were identified by analysis of miRNA targets and rapidly evolving genes.


A Mitochondrion-Targeted Antioxidant Ameliorates Isoflurane-Induced Cognitive Deficits in Aging Mice.

  • Jing Wu‎ et al.
  • PloS one‎
  • 2015‎

Isoflurane possesses neurotoxicity and can induce cognitive deficits, particularly in aging mammals. Mitochondrial reactive oxygen species (mtROS) have been linked to the early pathogenesis of this disorder. However, the role of mtROS remains to be evaluated due to a lack of targeted method to treat mtROS. Here, we determined in aging mice the effects of the mitochondrion-targeted antioxidant SS-31, on cognitive deficits induced by isoflurane, a general inhalation anesthetic. We further investigated the possible mechanisms underlying the effects of SS-31 on hippocampal neuro-inflammation and apoptosis. The results showed that isoflurane induced hippocampus-dependent memory deficit, which was associated with mitochondrial dysfunction including reduced ATP contents, increased ROS levels, and mitochondrial swelling. Treatment with SS-31 significantly ameliorated isoflurane-induced cognitive deficits through the improvement of mitochondrial integrity and function. Mechanistically, SS-31 treatment suppressed pro-inflammatory responses by decreasing the levels of NF-κB, NLRP3, caspase 1, IL-1β, and TNF-α; and inhibited the apoptotic pathway by decreasing the Bax/Bcl-2 ratio, reducing the release of cytochrome C, and blocking the cleavage of caspase 3. Our results indicate that isoflurane-induced cognitive deficits may be attenuated by mitochondrion-targeted antioxidants, such as SS-31. Therefore, SS-31 may have therapeutic potentials in preventing injuries from oxidative stresses that contribute to anesthetic-induced neurotoxicity.


Residues required for phosphorylation of translation initiation factor eIF2α under diverse stress conditions are divergent between yeast and human.

  • Mithu Majumder‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2015‎

PERK, PKR, HRI and GCN2 are the four mammalian kinases that phosphorylate the α subunit of the eukaryotic translation initiation factor 2 (eIF2α) on Ser51. This phosphorylation event is conserved among many species and attenuates protein synthesis in response to diverse stress conditions. In contrast, Saccharmyces cerevisiae expresses only the GCN2 kinase. It was demonstrated previously in S. cerevisiae that single point mutations in eIF2α's N-terminus severely impaired phosphorylation at Ser51. To assess whether similar recognition patterns are present in mammalian eIF2α, we expressed human eIF2α's with these mutations in mouse embryonic fibroblasts and assessed their phosphorylation under diverse stress conditions. Some of the mutations prevented the stress-induced phosphorylation of eIF2α by all mammalian kinases, thus defining amino acid residues in eIF2α (Gly 30, Leu 50, and Asp 83) that are required for substrate recognition. We also identified residues that were less critical or not required for recognition by the mammalian kinases (Ala 31, Met 44, Lys 79, and Tyr 81), even though they were essential for recognition of the yeast eIF2α by GCN2. We propose that mammalian eIF2α kinases evolved to maximize their interactions with the evolutionarily conserved Ser51 residue of eIF2α in response to diverse stress conditions, thus adding to the complex signaling pathways that mammalian cells have over simpler organisms.


Effect of metformin on cancer risk and treatment outcome of prostate cancer: a meta-analysis of epidemiological observational studies.

  • Hongliang Yu‎ et al.
  • PloS one‎
  • 2014‎

Laboratory studies have shown the anti-tumor effect of metformin on prostate cancer. However, recent epidemiological studies have yielded inconclusive results.


CYLD negatively regulates nontypeable Haemophilus influenzae-induced IL-8 expression via phosphatase MKP-1-dependent inhibition of ERK.

  • Wenzhuo Y Wang‎ et al.
  • PloS one‎
  • 2014‎

Nontypeable Haemophilus influenzae (NTHi), a Gram-negative bacterium, is the primary cause of otitis media in children and the exacerbation of chronic obstructive pulmonary disease in adults. A hallmark of both diseases is an overactive inflammatory response, including the upregulation of chemokines, such as interleukin-8 (IL-8). An appropriate inflammatory response is essential for eradicating pathogens. However, excessive inflammation can cause host tissue damage. Therefore, expression of IL-8 must be tightly regulated. We previously reported that NTHi induces IL-8 expression in an ERK-dependent manner. We also have shown that the deubiquitinase cylindromatosis (CYLD) suppresses NTHi-induced inflammation. However, the underlying molecular mechanism of how CYLD negatively regulates ERK-mediated IL-8 production is largely unknown. Here, we examine both human lung epithelial A549 cells and lung of Cyld-/- mice to show that CYLD specifically targets the activation of ERK. Interestingly, CYLD enhances NTHi-induced upregulation of another negative regulator, MAP Kinase Phosphatase-1 (MKP-1), which, in turn, leads to reduced ERK activation and subsequent suppression of IL-8. Taken together, the CYLD suppression of ERK-dependent IL-8 via MKP-1 may bring novel insights into the tight regulation of inflammatory responses and also lead to innovative therapeutic strategies for controlling these responses by targeting key negative regulators of inflammation.


Highly efficient retinal gene delivery with helper-dependent adenoviral vectors.

  • Simon Lam‎ et al.
  • Genes & diseases‎
  • 2014‎

There have been significant advancements in the field of retinal gene therapy in the past several years. In particular, therapeutic efficacy has been achieved in three separate human clinical trials conducted to assess the ability of adeno-associated viruses (AAV) to treat of a type of Leber's congenital amaurosis caused by RPE65 mutations. However, despite the success of retinal gene therapy with AAV, challenges remain for delivering large therapeutic genes or genes requiring long DNA regulatory elements for controlling their expression. For example, Stargardt's disease, a form of juvenile macular degeneration, is caused by defects in ABCA4, a gene that is too large to be packaged in AAV. Therefore, we investigated the ability of helper dependent adenovirus (HD-Ad) to deliver genes to the retina as it has a much larger transgene capacity. Using an EGFP reporter, our results showed that HD-Ad can transduce the entire retinal epithelium of a mouse using a dose of only 1 × 105 infectious units and maintain transgene expression for at least 4 months. The results demonstrate that HD-Ad has the potential to be an effective vector for the gene therapy of the retina.


Is it sufficient to evaluate bone marrow involvement in newly diagnosed lymphomas using 18F-FDG PET/CT and/or routine iliac crest biopsy? A new approach of PET/CT-guided targeted bone marrow biopsy.

  • Bing Hao‎ et al.
  • BMC cancer‎
  • 2018‎

To investigate whether PET/CT-guided bone marrow biopsy adds complementary information for evaluation of bone marrow involvement (BMI) in newly diagnosed lymphomas.


Genetic and Clinical Profiles of Disseminated Bacillus Calmette-Guérin Disease and Chronic Granulomatous Disease in China.

  • Tao Li‎ et al.
  • Frontiers in immunology‎
  • 2019‎

Background: Disseminated Bacillus Calmette-Guérin disease (D-BCG) in children with chronic granulomatous disease (CGD) can be fatal, while its clinical characteristics remain unclear because both diseases are extremely rare. The patients with CGD receive BCG vaccination, because BCG vaccination is usually performed within 24 h after delivery in China. Methods: We prospectively followed-up Chinese patients with CGD who developed D-BCG to characterize their clinical and genetic characteristics. The diagnoses were based on the patients' clinical, genetic, and microbiological characteristics. Results: Between September 2009 and September 2016, we identified 23 patients with CGD who developed D-BCG. Their overall 10-year survival rate was 34%. We created a simple dissemination score to evaluate the number of infected organ systems and the survival probabilities after 8 years were 62 and 17% among patients with simple dissemination scores of ≤3 and >3, respectively (p = 0.0424). Survival was not significantly associated with the CGD stimulation index or interferon-γ treatment. Eight patients underwent umbilical cord blood transplantation and 5 of them were successfully treated. The genetic analyses found mutations in CYBB (19 patients), CYBA (1 patient), NCF1 (1 patient), and NCF2 (1 patient). We identified 6 novel highly likely pathogenic mutations, including 4 mutations in CYBB and 2 mutations in NCF1. Conclusions: D-BCG is a deadly complication of CGD. The extent of BCG spreading is strongly associated with clinical outcomes, and hematopoietic stem cell transplantation may be a therapeutic option for this condition.


Protective Effect of Koumine, an Alkaloid from Gelsemium Sempervirens, on Injury Induced by H₂O₂ in IPEC-J2 Cells.

  • Zhihang Yuan‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Medicinal herbal plants have been commonly used for intervention in different diseases and improvement of health worldwide. Koumine, an alkaloid monomer found abundantly in Gelsemium plants, can be effectively used as an antioxidant. The purpose of this study was to evaluate the potential protective effect of koumine against hydrogen peroxide (H₂O₂)-induced oxidative stress and apoptosis in porcine intestinal epithelial cell line (IPEC-J2 cells). MTT assays showed that koumine significantly increased cell viability in H₂O₂-mediated IPEC-J2 cells. Preincubation with koumine ameliorated H₂O₂-medicated apoptosis by decreasing reactive oxygen species (ROS) production, and efficiently suppressed the lactate dehydrogenase (LDH) release and malondialdehyde (MDA) production. Moreover, a loss of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) activities was restored to normal level in H₂O₂-induced IPEC-J2 cells upon koumine exposure. Furthermore, pretreatment with koumine suppressed H₂O₂-mediated loss of mitochondrial membrane potential, caspase-9 and caspase-3 activation, decrease of Bcl-2 expression and elevation of Bax expressions. Collectively, the results of this study indicated that koumine possesses the cytoprotective effects in IPEC-J2 cells during exposure to H₂O₂ by suppressing production of ROS, inhibiting the caspase-3 activity and influencing the expression of Bax and Bcl-2. Koumine could potentially serve as a protective effect against H₂O₂-induced apoptosis.


Ultrasound-Guided versus Thoracoscopic Pleural Biopsy for Diagnosing Tuberculous Pleurisy Following Inconclusive Thoracentesis: A Randomized, Controlled Trial.

  • Xiaoyu Zhou‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2018‎

BACKGROUND Traditional diagnostic methods for tuberculosis (TB) cannot be reliably applied to tuberculous pleurisy. Therefore, this prospective, randomized, controlled trial was performed to compare the diagnostic sensitivity and safety of ultrasound-guided cutting-needle pleural biopsy versus thoracoscopic pleural biopsy in patients suspected of tuberculous pleurisy following inconclusive thoracentesis. MATERIAL AND METHODS A total of 196 adult patients with acid-fast bacillus (AFB)-negative exudative pleural effusions clinically suspected of tuberculous pleurisy were recruited. Enrollees were randomized into 2 cohorts: ultrasound-guided cutting-needle pleural biopsy (n=96) or thoracoscopic pleural biopsy (n=96). The overall diagnostic yields, diagnostic sensitivities for tuberculous pleurisy, and post-procedural complications for both cohorts were statistically compared. RESULTS Ultrasound-guided pleural biopsy displayed an overall diagnostic yield of 83%, while thorascopic pleural biopsy displayed a similar overall diagnostic yield of 86% (χ²=1.88, df=1, p=0.17). There were 127 patients conclusively diagnosed with tuberculous pleurisy, resulting in a tuberculous pleurisy prevalence of 65% in this patient population (66% in the ultrasound cohort vs. 63% in the thoracoscopy cohort; p>0.05). Ultrasound-guided pleural biopsy displayed a sensitivity of 82% in detecting tuberculous pleurisy, while thorascopic pleural biopsy displayed a similar sensitivity of 90% (χ²=1.05, df=1, p=0.30). The sensitivities of these 2 modalities did not significantly differ based on the degree of pleural thickening (p>0.05). Post-procedural complications were minor. CONCLUSIONS Ultrasound-guided and thoracoscopic pleural biopsy both display strong (>80%) but statistically similar overall diagnostic yields for diagnosing pleural effusions following inconclusive thoracentesis. Both modalities also display strong (>80%) but statistically similar sensitivities in detecting tuberculous pleurisy.


The combination of cantharidin and antiangiogenic therapeutics presents additive antitumor effects against pancreatic cancer.

  • Meng-Dan Xu‎ et al.
  • Oncogenesis‎
  • 2018‎

Cantharidin, one of the active components of mylabris, is believed to have antitumor activity. Cantharidin selectively inhibits protein phosphatase 2A (PP2A), which can repress multiple oncogenic kinases (ERK, JNK, PKC, and NF-κB). Researches in vitro have shown that cantharidin suppresses cell viability and metastasis in pancreatic cancer cells. This study aims to investigate the effects of cantharidin on pancreatic cancer xenografts in vivo. Xenograft models were established using cells stably expressing luciferase. Xenograft growth was evaluated by living imaging. Gene expression was determined using a microarray, real-time PCR, a RayBiotech antibody array, and the Milliplex assay. Surprisingly, cantharidin significantly accelerated xenograft growth. Living imaging showed a rapid distribution of D-luciferin in cantharidin-treated xenografts, suggesting a rich blood supply. Immunohistochemistry confirmed increased angiogenesis. Microarray and antibody array identified upregulated proangiogenic and downregulated antiangiogenic factors. The Milliplex assay suggested elevated secretion of IL-6, IL-8, TNF-α, and VEGF. Inhibitors of ERK, JNK, PKC, and NF-κB pathway attenuated the cantharidin-induced changes to proangiogenic gene expression. PKC pathway-inhibiting tamoxifen or antiangiogenic therapeutics, including Ginsenoside Rg3, bevacizumab, Apatinib, and Endostar, antagonized the proangiogenic effect of cantharidin or its derivatives. These regimens presented remarkable additive antitumor effects in vivo. Although cantharidin presents antitumor effects in vitro and has been applied in clinical practice, we revealed an unfavorable proangiogenic side effect. We recommend that the clinical application of cantharidin should be performed on the premise of antivascularization therapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: