Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 135 papers

Insulin-like growth factor binding protein-3 mediates interleukin-24-induced apoptosis through inhibition of the mTOR pathway in prostate cancer.

  • Yuefeng Du‎ et al.
  • Oncology reports‎
  • 2015‎

IGF-binding protein-3 (IGFBP-3) has been shown to induce apoptosis in an insulin-like growth factor (IGF)‑independent manner in various cell systems, however, the underlying molecular mechanisms remain unknown. In the present study, we showed that IGFBP-3 significantly enhanced interleukin-24 (IL-24)-induced cell death in prostate cancer (PC) cell lines in vitro. Both the addition of IGFBP-3 to cell medium or the enforced expression of IGFBP-3 in the PC cell line inhibited activation of mammalian target of rapamycin (mTOR). Downregulation of mTOR/S6K reduced Mcl-1 protein expression and consequently promoted sensitization to IL-24 treatment. Overexpression of Mcl-1 reduced the level of cleaved poly(ADP-ribose) polymerase (PARP) induced by IL-24 and IGFBP-3, suggesting that the IL-24-induced apoptosis is realized by way of Mcl-1. We then showed that the combination of IL-24 and IGFBP-3 significantly suppressed PC tumor growth in vivo. We propose that the IGFBP-3 and IL-24 non-toxic mTOR inhibitors can be used as an adjuvant in the treatment of PC.


Predictive role of corneal Q-value differences between nasal-temporal and superior-inferior quadrants in orthokeratology lens decentration.

  • Juan Li‎ et al.
  • Medicine‎
  • 2017‎

To investigate the association between pretreatment corneal parameters and orthokeratology lens decentration.


Human Umbilical Cord Blood Serum-derived α-Secretase: Functional Testing in Alzheimer's Disease Mouse Models.

  • Ahsan Habib‎ et al.
  • Cell transplantation‎
  • 2018‎

Alzheimer's disease (AD) is an age-related disorder that affects cognition. Our previous studies showed that the neuroprotective fragment of amyloid procurer protein (APP) metabolite, soluble APPα (sAPPα), interferes with β-site APP-cleaving enzyme 1 (BACE1, β-secretase) cleavage and reduces amyloid-β (Aβ) generation. In an attempt to identify approaches to restore sAPPα levels, we found that human cord blood serum (CBS) significantly promotes sAPPα production compared with adult blood serum (ABS) and aged blood serum (AgBS) in Chinese hamster ovary cells stably expressing wild-type human APP. Interestingly, CBS selectively mediated the α-secretase cleavage of human neuron-specific recombinant APP695 in a cell-free system independent of tumor necrosis factor-α converting enzyme (TACE; a disintegrin and metalloproteinase domain-containing protein 17 [ADAM17]) and ADAM. Subsequently, using 3-step chromatographic separation techniques (i.e., diethylaminoethanol, size-exclusion, and ion-exchange chromatography), we purified and ultimately identified a CBS-specific fraction with enhanced α-secretase catalytic activity (termed αCBSF) and found that αCBSF has more than 3,000-fold increased α-secretase catalytic activity compared with the original pooled CBS. Furthermore, intracerebroventricular injection of αCBSF markedly increased cerebral sAPPα levels together with significant decreases in cerebral Aβ production and abnormal tau (Thr231) phosphorylation compared with the AgBS fraction with enhanced α-secretase activity (AgBSF) treatment in triple transgenic Alzheimer's disease (3xTg-AD) mice. Moreover, AgBSF administered intraperitoneally to transgenic mice with five familial Alzheimer's disease mutations (5XFAD) via an osmotic mini pump for 6 weeks (wk) ameliorated β-amyloid plaques and reversed cognitive impairment measures. Together, our results propose the necessity for further study aimed at identification and characterization of α-secretase in CBS for novel and effective AD therapy.


Potential Autoepitope within the Extracellular Region of Contactin-Associated Protein-like 2 in Mice.

  • Demian F Obregon‎ et al.
  • British journal of medicine and medical research‎
  • 2014‎

Implicated in autoimmune encephalitis, neuromyotonia and genetic forms of autism, here we report that contactin-associated protein-like 2 (CNTNAP2) contains a potential autoepitope within the extracellular region.


Mycoplasma ovipneumoniae induces sheep airway epithelial cell apoptosis through an ERK signalling-mediated mitochondria pathway.

  • Yanan Li‎ et al.
  • BMC microbiology‎
  • 2016‎

Mycoplasma ovipneumoniae (M. ovipneumoniae) is a species of Mycoplasma bacteria that specifically infects sheep and goat, causing ovine infectious pleuropneumonia. However, the mechanism underlying the pathogen-host interaction between M. ovipneumoniae and airway epithelial cells is unknown.


Capsular Polysaccharide of Mycoplasma ovipneumoniae Induces Sheep Airway Epithelial Cell Apoptosis via ROS-Dependent JNK/P38 MAPK Pathways.

  • Zhongjia Jiang‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2017‎

In an attempt to better understand the pathogen-host interaction between invading Mycoplasma ovipneumoniae (M. ovipneumoniae) and sheep airway epithelial cells, biological effects and possible molecular mechanism of capsular polysaccharide of M. ovipneumoniae (CPS) in the induction of cell apoptosis were explored using sheep bronchial epithelial cells cultured in air-liquid interface (ALI). The CPS of M. ovipneumoniae was first isolated and purified. Results showed that CPS had a cytotoxic effect by disrupting the integrity of mitochondrial membrane, accompanied with an increase of reactive oxygen species and decrease of mitochondrial membrane potential (ΔΨm). Of importance, the CPS exhibited an ability to induce caspase-dependent cell apoptosis via both intrinsic and extrinsic apoptotic pathways. Mechanistically, the CPS induced extrinsic cell apoptosis by upregulating FAS/FASL signaling proteins and cleaved-caspase-8 and promoted a ROS-dependent intrinsic cell apoptosis by activating a JNK and p38 signaling but not ERK1/2 signaling of mitogen-activated protein kinases (MAPK) pathways. These findings provide the first evidence that CPS of M. ovipneumoniae induces a caspase-dependent apoptosis via both intrinsic and extrinsic apoptotic pathways in sheep bronchial epithelial cells, which may be mainly attributed by a ROS-dependent JNK and p38 MAPK signaling pathways.


PrLZ increases prostate cancer docetaxel resistance by inhibiting LKB1/AMPK-mediated autophagy.

  • Jin Zeng‎ et al.
  • Theranostics‎
  • 2018‎

Rationale: Docetaxel-mediated chemotherapy is the first-line standard approach and has been determined to show a survival advantage for metastatic castration-resistant prostate cancer (mCRPC) patients. However, a substantial proportion of patients eventually becomes refractory due to drug resistance. The detailed mechanisms remain unclear. We have previously reported that Prostate Leucine Zipper (PrLZ), a specific oncogene of prostate cancer (PCa), promotes PCa cell growth at the castration-resistant stage, thus suggesting a vital role of PrLZ in the progression of CRPC. In this study, we aimed to investigate the role of PrLZ in docetaxel resistance in PCa, focusing on PrLZ-regulating autophagy pathway. Methods: Human PCa PC3, LNCaP and C4-2 cell lines were used as the model system in vitro and PCa xenografts and PrLZ-knockout mice were used as the model system in vivo. Docetaxel-induced cell death and apoptosis in PCa were determined by MTT and flow cytometry assay. The role of PrLZ on the regulation of autophagy and liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) signaling pathway was analyzed using immunoblotting, immunoprecipitation, siRNA silencing and plasmid overexpression. Results: PrLZ increased docetaxel-mediated drug resistance both in vitro and in vivo. Mechanistic dissection revealed that PrLZ interacted with LKB1 and further inhibited the activation of LKB1/AMPK signals, which negatively contributed to the induction of autophagy. Moreover, PrLZ/LKB1-mediated autophagy conferred resistance to docetaxel-induced cell death and apoptosis both in vitro and in vivo. Conclusion: These findings identify a novel role of PrLZ in autophagy manipulation and provide new insight into docetaxel chemoresistance in PCa, suggesting a new strategy for treating mCRPC by targeting this newly identified signaling pathway.


Dehydroeffusol inhibits hypoxia-induced epithelial-mesenchymal transition in non-small cell lung cancer cells through the inactivation of Wnt/β-catenin pathway.

  • Haitao Wei‎ et al.
  • Bioscience reports‎
  • 2020‎

Dehydroeffusol (DHE) is a phenanthrene compound that possesses anti-tumor activity. However, the effect of DHE on non-small cell lung cancer (NSCLC) has not been investigated previously. Therefore, the objective of our study was to explore the role of DHE in NSCLC and the underlying mechanism. Our results showed that DHE significantly inhibited the cell viability of A549 cells in a dose- and time-dependent manner under normoxic condition. Moreover, A549 cells were more sensitive to DHE under hypoxic condition compared with the A549 cells cultured in normoxic condition. Hypoxia-induced increased migration and invasion abilities were mitigated by DHE in A549 cells. Treatment of DHE caused increased E-cadherin expression and decreased N-cadherin expression in hypoxia-induced A549 cells. DHE also suppressed hypoxia-induced increase in both protein and mRNA levels of hypoxia inducible factor-1α (HIF-1α) expression in A549 cells. Furthermore, DHE inhibited hypoxia-induced activation of Wnt/β-catenin pathway in A549 cells. The inhibitory effect of DHE on hypoxia-induced EMT was reversed by LiCl, which is an activator of Wnt/β-catenin signaling pathway. In conclusion, these findings demonstrated that DHE prevented hypoxia-induced EMT in NSCLC cells by inhibiting the activation of Wnt/β-catenin pathway, suggesting that DHE might serve as a therapeutic target for the NSCLC metastasis.


Identification and target-pathway deconvolution of FFA4 agonists with anti-diabetic activity from Arnebia euchroma (Royle) Johnst.

  • Fangfang Xu‎ et al.
  • Pharmacological research‎
  • 2021‎

FFA4 is a novel therapeutic target for the treatment of metabolic diseases, such as type II diabetes. However, there are still few ligands with structural diversity, selectivity and high potency, and the signaling pathway downstream of FFA4 remains to be poorly characterized. In this study, a high performance liquid chromatography-corona charged aerosol detector (HPLC-CAD) combined with label-free dynamic mass redistribution (DMR) method was introduced to guide the discovery of FFA4 agonists from Arnebia euchroma (Royle) Johnst. Ten compounds were identified as FFA4 agonists and structure-activity relationship was obtained. Among them, shikonin displayed the most potent activity with pEC50 value of 6.02 ± 0.19. The activity of shikonin was confirmed by FLIPR (fluorometric imaging plate reader) assay. Signaling pathways of FFA4 were explored in HT-29 cells endogenously expressing FFA4 using shikonin and known FFA4 agonists α-linolenic acid (ALA) and TUG891. Multiple pathways included Gq/11-PLC-Ca2+-PKC, RohA, JNK, p38 MAPK, Gi/o and PI3K signaling but may not involve Gs signaling triggered by shikonin, ALA and TUG891. Besides, shikonin, TUG891 and ALA could induce ERK1/2 and AKT phosphorylation in HT-29 cells. Moreover, anti-diabetes effects of shikonin were evaluated on the glucose intolerance in diabetic db/db mice. Shikonin reduced plasma glucose level, suggesting that it had the potential in treatment of type II diabetes. The agonists identified in this study provided structure guidance for FFA4 drug design. This study was also useful for understanding FFA4 pharmacology and its biological function.


CD82 Suppresses ADAM17-Dependent E-Cadherin Cleavage and Cell Migration in Prostate Cancer.

  • Zhenkun Ma‎ et al.
  • Disease markers‎
  • 2020‎

CD82 acts as a tumor suppressor in a series of steps in malignant progression. Here, we identified a novel function of CD82 on posttranslational regulating E-cadherin in prostate cancer. In our study, the declined expression of CD82 was verified in prostate cancer tissues and cell lines compared with normal tissue and cell lines. Functionally, CD82 inhibited cell migration and E-cadherin cleavage from the cell membrane in prostate cancer cell. Further study proved that a disintegrin and metalloproteinase ADAM17 as an executor of E-cadherin cleavage mediated the inhibitory regulation of CD82 in E-cadherin shedding in prostate cancer. Specifically, CD82 interacted with ADAM17 and inhibited its metalloprotease activity, which led to the descent of E-cadherin shedding. These results show a nuanced but important role of CD82 in nontranscriptional regulation of E-cadherin, which may help to understand the intricate regulation of dysfunctional adhesion molecule in cancer progression.


Nicotinamide N-methyltransferase inhibits autophagy induced by oxidative stress through suppressing the AMPK pathway in breast cancer cells.

  • Haitao Yu‎ et al.
  • Cancer cell international‎
  • 2020‎

Nicotinamide N-methyltransferase (NNMT) is highly expressed in several cancers and can regulate cell epigenetic status and various cell metabolism pathways, such as ATP synthesis and cellular stress response. We reported in our previous papers that NNMT overexpression inhibits the apoptosis and enhances the chemotherapy resistance of breast cancer cells. This study aims to investigate the effect of NNMT on autophagy induced by oxidative stress in breast cancer cells, which might provide a novel therapeutic strategy for breast cancer treatment.


Alpha Thalassemia/Intellectual Disability X-Linked Deficiency Sensitizes Non-Small Cell Lung Cancer to Immune Checkpoint Inhibitors.

  • Tao Hou‎ et al.
  • Frontiers in oncology‎
  • 2020‎

The immune checkpoint inhibitors (ICIs) have achieved great success in the treatment of non-small cell lung cancer (NSCLC) patients. However, the response rate is low. The molecular mechanism involved in the effectiveness of ICIs remains to be elucidated.


ERK1/2 inhibits Cullin 3/SPOP-mediated PrLZ ubiquitination and degradation to modulate prostate cancer progression.

  • Yizeng Fan‎ et al.
  • Cell death and differentiation‎
  • 2022‎

The gene encoding the E3 ubiquitin ligase substrate-binding adaptor SPOP is frequently mutated in prostate cancer (PCa), but how SPOP functions as a tumor suppressor and contributes to PCa pathogenesis remains poorly understood. Prostate Leucine Zipper (PrLZ) serves as a prostate-specific and androgen-responsive gene, which plays a pivotal role in the malignant progression of PCa. However, the upstream regulatory mechanism of PrLZ protein stability and its physiological contribution to PCa carcinogenesis remain largely elusive. Here we report that PrLZ can be degraded by SPOP. PrLZ abundance is elevated in SPOP-mutant expressing PCa cell lines and patient specimens. Meanwhile, ERK1/2 might regulate SPOP-mediated PrLZ degradation through phosphorylating PrLZ at Ser40, which blocks the interaction between SPOP and PrLZ. In addition, we identify IL-6 might act as an upstream PrLZ degradation regulator via promoting its phosphorylation by ERK1/2, leading to its impaired recognition by SPOP. Thus, our study reveals a novel SPOP substrate PrLZ which might be controlled by ERK1/2-mediated phosphorylation, thereby facilitating to explore novel drug targets and improve therapeutic strategy for PCa.


Extraction, Structural Characterization, and Immunomodulatory Activity of a High Molecular Weight Polysaccharide From Ganoderma lucidum.

  • Guo Liu‎ et al.
  • Frontiers in nutrition‎
  • 2022‎

Ganoderma lucidum polysaccharides (GLP) exhibited excellent immunomodulatory activity. Unfortunately, the structure and immunomodulatory activity of GLP are still unclear. GLP was separated into two fractions [high Mw Restriction Fragment Length Polymorphism (RGLP) and low Mw EGLP] using 10 kDa cut-off ultrafiltration membrane. Although the RGLP content was low in GLP, the immunomodulatory activity in RGLP was significantly higher than that of EGLP. Moreover, RGLP was further separated via the Sephacryl column to obtain RGLP-1 showed the best immunomodulatory activity in the macrophage RAW264.7 model. Structural analysis revealed that RGLP-1 was 3,978 kDa and mainly consisted of glucose. Periodate oxidation, Smith degradation, and methylation results indicated that RGLP-1 is a β-pyran polysaccharide mainly with 1→3, 1→4, 1→6, and 1→3, 6 glycosyl bonds at a molar ratio of 40.08: 8.11: 5.62: 17.81. Scanning electron microscopy, atomic force microscopy, and Congo red experiments revealed that RGLP-1 intertwined with each other to form circular aggregates and might possess a globular structure with triple-helix conformation in water. Overall, these results provide RGLP-1 as a potential functional food ingredient or pharmaceutical for immunomodulatory.


RNA adenosine modifications related to prognosis and immune infiltration in osteosarcoma.

  • Shijie Chen‎ et al.
  • Journal of translational medicine‎
  • 2022‎

RNA adenosine modifications, which are primarily mediated by "writer" enzymes (RMWs), play a key role in epigenetic regulation in various biological processes, including tumorigenesis. However, the expression and prognostic role of these genes in osteosarcoma (OS) remain unclear.


Circ-CTNNB1 drives aerobic glycolysis and osteosarcoma progression via m6A modification through interacting with RBM15.

  • Feng Yang‎ et al.
  • Cell proliferation‎
  • 2023‎

Circular RNAs (circRNAs) are a subclass of noncoding RNAs, playing essential roles in tumorigenesis and aggressiveness. Recent studies have revealed the pivotal functions of circ-CTNNB1 (a circular RNA derived from CTNNB1) in cancer progression. However, little is known about the role of circ-CTNNB1 in osteosarcoma (OS), a highly malignant bone tumour in children and adolescents.


Integration of Two-Dimensional Liquid Chromatography-Mass Spectrometry and Molecular Docking to Characterize and Predict Polar Active Compounds in Curcuma kwangsiensis.

  • Kaijing Xiang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Curcuma kwangsiensis, one species of Curcumae zedoaria Ros. c, is a commonly used traditional Chinese medicine (TCM) for treating cardiovascular disease, cancer, asthma and inflammation. Polar compounds are abundant in water decoction, which would be responsible for critical pharmacological effects. However, current research on polar compounds in Curcumae zedoaria Ros. c remains scarce. In this study, the polar fraction from Curcuma kwangsiensis was firstly profiled on G protein-coupled receptor 109A (GPR109A), β2-adrenergic receptor (β2-AR), neurotensin receptor (NTSR), muscarinic-3 acetylcholine receptor (M3) and G protein-coupled receptor 35 (GPR35), which were involved in its clinical indications and exhibited excellent β2-AR and GPR109A receptor activities. Then, an offline two-dimensional reversed-phase liquid chromatography (RPLC) coupled with the hydrophilic interaction chromatography (HILIC) method was developed to separate polar compounds. By the combination of a polar-copolymerized XAqua C18 column and an amide-bonded XAmide column, an orthogonality of 47.6% was achieved. As a result of coupling with the mass spectrometry (MS), a four-dimensional data plot was presented in which 373 mass peaks were detected and 22 polar compounds tentatively identified, including the GPR109A agonist niacin. Finally, molecular docking of these 22 identified compounds to β2-AR, M3, GPR35 and GPR109A receptors was performed to predict potential active ingredients, and compound 9 was predicted to have a similar interaction to the β2-AR partial agonist salmeterol. These results were supplementary to the material basis of Curcuma kwangsiensis and facilitated the bioactivity research of polar compounds. The integration of RPLC×HILIC-MS and molecular docking can be a powerful tool for characterizing and predicting polar active components in TCM.


CD46 splice variant enhances translation of specific mRNAs linked to an aggressive tumor cell phenotype in bladder cancer.

  • Jin Zeng‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2021‎

CD46 is well known to be involved in diverse biological processes. Although several splice variants of CD46 have been identified, little is known about the contribution of alternative splicing to its tumorigenic functions. In this study, we found that exclusion of CD46 exon 13 is significantly increased in bladder cancer (BCa) samples. In BCa cell lines, enforced expression of CD46-CYT2 (exon 13-skipping isoform) promoted, and CD46-CYT1 (exon 13-containing isoform) attenuated, cell growth, migration, and tumorigenicity in a xenograft model. We also applied interaction proteomics to identify exhaustively the complexes containing the CYT1 or CYT2 domain in EJ-1 cells. 320 proteins were identified that interact with the CYT1 and/or CYT2 domain, and most of them are new interactors. Using an internal ribosome entry site (IRES)-dependent reporter system, we established that CD46 could regulate mRNA translation through an interaction with the translation machinery. We also identified heterogeneous nuclear ribonucleoprotein (hnRNP)A1 as a novel CYT2 binding partner, and this interaction facilitates the interaction of hnRNPA1 with IRES RNA to promote IRES-dependent translation of HIF1a and c-Myc. Strikingly, the splicing factor SRSF1 is highly correlated with CD46 exon 13 exclusion in clinical BCa samples. Taken together, our findings contribute to understanding the role of CD46 in BCa development.


Nicotinamide N-methyltransferase enhances chemoresistance in breast cancer through SIRT1 protein stabilization.

  • Yanzhong Wang‎ et al.
  • Breast cancer research : BCR‎
  • 2019‎

Nicotinamide N-methyltransferase (NNMT) is overexpressed in various human tumors and involved in the development and progression of several carcinomas. In breast cancer, NNMT was found to be overexpressed in several cell lines. However, the clinical relevance of NNMT in breast cancer is not yet clear.


Binocular integration and stereopsis in children with television torticollis.

  • Cheng Yang‎ et al.
  • BMC ophthalmology‎
  • 2021‎

To observe the characteristics of binocular integration and stereopsis in children with television torticollis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: