Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 352 papers

Mammalian Kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition.

  • Jennetta W Hammond‎ et al.
  • PLoS biology‎
  • 2009‎

Kinesin-3 motors drive the transport of synaptic vesicles and other membrane-bound organelles in neuronal cells. In the absence of cargo, kinesin motors are kept inactive to prevent motility and ATP hydrolysis. Current models state that the Kinesin-3 motor KIF1A is monomeric in the inactive state and that activation results from concentration-driven dimerization on the cargo membrane. To test this model, we have examined the activity and dimerization state of KIF1A. Unexpectedly, we found that both native and expressed proteins are dimeric in the inactive state. Thus, KIF1A motors are not activated by cargo-induced dimerization. Rather, we show that KIF1A motors are autoinhibited by two distinct inhibitory mechanisms, suggesting a simple model for activation of dimeric KIF1A motors by cargo binding. Successive truncations result in monomeric and dimeric motors that can undergo one-dimensional diffusion along the microtubule lattice. However, only dimeric motors undergo ATP-dependent processive motility. Thus, KIF1A may be uniquely suited to use both diffuse and processive motility to drive long-distance transport in neuronal cells.


A Long-Lived Luminal Subpopulation Enriched with Alveolar Progenitors Serves as Cellular Origin of Heterogeneous Mammary Tumors.

  • Luwei Tao‎ et al.
  • Stem cell reports‎
  • 2015‎

It has been shown that the mammary luminal lineage could be maintained by luminal stem cells or long-lived progenitors, but their identity and role in breast cancer remain largely elusive. By lineage analysis using Wap-Cre mice, we found that, in nulliparous females, mammary epithelial cells (MECs) genetically marked by Wap-Cre represented a subpopulation of CD61+ luminal progenitors independent of ovarian hormones for their maintenance. Using a pulse-chase lineage-tracing approach based on Wap-Cre adenovirus (Ad-Wap-Cre), we found that Ad-Wap-Cre-marked nulliparous MECs were enriched with CD61+ alveolar progenitors (APs) that gave rise to CD61- alveolar luminal cells during pregnancy/lactation and could maintain themselves long term. When transformed by different oncogenes, they could serve as cells of origin of heterogeneous mammary tumors. Thus, our study revealed a type of long-lived AP within the luminal lineage that may serve as the cellular origin of multiple breast cancer subtypes.


Lineage tracing of mammary epithelial cells using cell-type-specific cre-expressing adenoviruses.

  • Luwei Tao‎ et al.
  • Stem cell reports‎
  • 2014‎

Lineage tracing using Cre/lox transgenic mice provides a powerful tool for studying normal mammary epithelial cell (MEC) development and the cellular origins of mammary tumors under physiological settings. However, generation of new transgenic mice for lineage-tracing purposes is often time consuming. Here, we report a lineage-tracing tool for MECs based on intraductal injection of lineage-specific Cre-expressing adenovirus (Ad-Cre). Using well-characterized promoters for Keratin 8 and Keratin 14, we generated lineage-specific Ad-Cre lines for luminal and basal MECs, respectively. By pulse-chase lineage tracing using these Ad-Cre lines, we showed that luminal and basal lineages are largely self-sustained and that IRS1 and IRS2 are essential for maintaining the basal lineage; we also showed that heterogeneous mammary tumors can be induced from luminal MECs in mice carrying the Etv6-NTRK3 fusion gene. Overall, we validated the Ad-Cre system as a promising and efficient tool for fate mapping of normal and malignant cells in adult tissues.


Identification of microRNAs involved in acute rejection and spontaneous tolerance in murine hepatic allografts.

  • Miwa Morita‎ et al.
  • Scientific reports‎
  • 2014‎

Graft acceptance without the need for immunosuppressive drugs is the ultimate goal of transplantation therapy. In murine liver transplantation, allografts are accepted across major histocompatibility antigen complex barriers without the use of immunosuppressive drugs and constitute a suitable model for research on immunological rejection and tolerance. MicroRNA (miRNA) has been known to be involved in the immunological responses. In order to identify mRNAs in spontaneous liver allograft tolerance, miRNA expression in hepatic allografts was examined using this transplantation model. According to the graft pathological score and function, miR-146a, 15b, 223, 23a, 27a, 34a and 451 were upregulated compared with the expression observed in the syngeneic grafts. In contrast, miR-101a, 101b and 148a were downregulated. Our results demonstrated the alteration of miRNAs in the allografts and may indicate the role of miRNAs in the induction of tolerance after transplantation. Furthermore, our data suggest that monitoring the graft expression of novel miRNAs may allow clinicians to differentiate between rejection and tolerance. A better understanding of the tolerance inducing mechanism observed in murine hepatic allografts may provide a therapeutic strategy for attenuating allograft rejection.


Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor.

  • Yong Jun Kim‎ et al.
  • Cell stem cell‎
  • 2014‎

Neural crest (NC) generates diverse lineages including peripheral neurons, glia, melanocytes, and mesenchymal derivatives. Isolating multipotent human NC has proven challenging, limiting our ability to understand NC development and model NC-associated disorders. Here, we report direct reprogramming of human fibroblasts into induced neural crest (iNC) cells by overexpression of a single transcription factor, SOX10, in combination with environmental cues including WNT activation. iNC cells possess extensive capacity for migration in vivo, and single iNC clones can differentiate into the four main NC lineages. We further identified a cell surface marker for prospective isolation of iNCs, which was used to generate and purify iNCs from familial dysautonomia (FD) patient fibroblasts. FD-iNC cells displayed defects in cellular migration and alternative mRNA splicing, providing insights into FD pathogenesis. Thus, this study provides an accessible platform for studying NC biology and disease through rapid and efficient reprogramming of human postnatal fibroblasts.


Inhibitory effects and mechanism of 25-OH-PPD on glomerular mesangial cell proliferation induced by high glucose.

  • Junxian Yu‎ et al.
  • Environmental toxicology and pharmacology‎
  • 2016‎

To investigate the protective effects and potential mechanism of the compound 25-OH-PPD (PPD) on the glomerular mesangial cells (GMC) under high glucose condition.


Brain white matter integrity in heroin addicts during methadone maintenance treatment is related to relapse propensity.

  • Wei Li‎ et al.
  • Brain and behavior‎
  • 2016‎

Cognitive deficits caused by heroin-induced white matter (WM) impairments hinder addicts' engagement in and benefit from treatment. The predictive value of WM integrity in heroin addicts during methadone maintenance treatment (MMT) for future relapse is unclear.


Regional homogeneity changes between heroin relapse and non-relapse patients under methadone maintenance treatment: a resting-state fMRI study.

  • Haifeng Chang‎ et al.
  • BMC neurology‎
  • 2016‎

Methadone maintenance treatment (MMT) is recognized as one of the most effective treatments for heroin addiction but its effect is dimmed by the high incidence of heroin relapse. However, underlying neurobiology mechanism of heroin relapse under MMT is still largely unknown. Here, we took advantage of a resting-state fMRI technique by analysis of regional homogeneity (ReHo), and tried to explore the difference of brain function between heroin relapsers and non-relapsers in MMT.


Genome-wide identification of Polycomb target genes in human embryonic stem cells.

  • Xue Xiao‎ et al.
  • Gene‎
  • 2013‎

Polycomb group (PcG) proteins are epigenetic regulators that are essential for stem cell differentiation. Identifying PcG binding profiles is important for understanding the mechanisms of PcG-mediated repression in mammals. We used a mapping-convergence (M-C) algorithm using support vector machine (SVM) technology for genome-wide identification of PcG target genes in human embryonic stem cells. The method combined histone modifications and transcription factor binding motifs, eliminating the need for negative training samples as in traditional SVM. Good prediction accuracy comprising 3-fold cross-validation was obtained. In the analysis of 3133 PcG target genes identified by the model, PcG proteins were observed to suppress gene expression during differentiation. The results suggested that PcG and DNA methylation non-redundantly repress gene expression during differentiation. The genome-wide identification of PcG target genes will aid the further analysis of PcG mechanisms.


Preso1 dynamically regulates group I metabotropic glutamate receptors.

  • Jia-Hua Hu‎ et al.
  • Nature neuroscience‎
  • 2012‎

Group I metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, are G protein–coupled receptors (GPCRs) that are expressed at excitatory synapses in brain and spinal cord. GPCRs are often negatively regulated by specific G protein–coupled receptor kinases and subsequent binding of arrestin-like molecules. Here we demonstrate an alternative mechanism in which group I mGluRs are negatively regulated by proline-directed kinases that phosphorylate the binding site for the adaptor protein Homer, and thereby enhance mGluR–Homer binding to reduce signaling. This mechanism is dependent on a multidomain scaffolding protein, Preso1, that binds mGluR, Homer and proline-directed kinases and that is required for their phosphorylation of mGluR at the Homer binding site. Genetic ablation of Preso1 prevents dynamic phosphorylation of mGluR5, and Preso1(−/−) mice exhibit sustained, mGluR5-dependent inflammatory pain that is linked to enhanced mGluR signaling. Preso1 creates a microdomain for proline-directed kinases with broad substrate specificity to phosphorylate mGluR and to mediate negative regulation.


Mrgprs on vagal sensory neurons contribute to bronchoconstriction and airway hyper-responsiveness.

  • Liang Han‎ et al.
  • Nature neuroscience‎
  • 2018‎

Asthma, accompanied by lung inflammation, bronchoconstriction and airway hyper-responsiveness, is a significant public health burden. Here we report that Mas-related G protein-coupled receptors (Mrgprs) are expressed in a subset of vagal sensory neurons innervating the airway and mediates cholinergic bronchoconstriction and airway hyper-responsiveness. These findings provide insights into the neural mechanisms underlying the pathogenesis of asthma.


Antihypertensive drugs use and the risk of prostate cancer: a meta-analysis of 21 observational studies.

  • Liang Cao‎ et al.
  • BMC urology‎
  • 2018‎

Due to the lack of strong evidence to identify the relationship between antihypertensive drugs use and the risk of prostate cancer, it was needed to do a systematic review to go into the subject.


Characteristics of circular RNA expression of pulmonary macrophages in mice with sepsis-induced acute lung injury.

  • Xiaowei Bao‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

Circular RNAs (circRNAs) make up a large class of non-coding RNAs and play important roles in the pathology of a variety of diseases. However, their roles in pulmonary macrophage polarization after sepsisinduced lung injury is unknown. In this study, mice were divided into two groups: Sham control group and cecal ligation and puncture (CLP)-induced ALI group. Macrophages were isolated from lung homogenates 24 hours after SCLP/CLP. We started with RNA-seq of circRNA changes in macrophages and validated by RT-PCR in the following experiments. A total of 4318 circRNAs were detected in the two groups. Of these, 11 and 126 circRNAs were found to be significantly upregulated and downregulated, respectively, compared to the control (p≤0.05, Fold Change ≥2). Differentially expressed circRNAs with a high foldchange (fold-change >4, P<0.05) were selected for validation by qRT-PCR, 10 of which were verified. Furthermore, the most differentially expressed circRNAs within all the comparisons were annotated in detail with circRNA/miRNA interaction information using miRNA target prediction software. The network of circRNA-miRNA-mRNA was illustrated by cytoscape software. Gene ontology analyses indicated the upregulated circRNAs were involved in the multiple biological functions such as regulation of mitochondrion distribution and Notch binding, while the down-regulated circRNAs mainly involved in the biological process as histone H3K27 methylation. KEGG pathway analysis revealed TGF-beta signaling pathway was related to the upregulated circRNAs. The present study provides a novel insight into the roles of circRNAs in pulmonary macrophage differentiation and polarization post septic lung injury.


Symbiotic cardiac pacemaker.

  • Han Ouyang‎ et al.
  • Nature communications‎
  • 2019‎

Self-powered implantable medical electronic devices that harvest biomechanical energy from cardiac motion, respiratory movement and blood flow are part of a paradigm shift that is on the horizon. Here, we demonstrate a fully implanted symbiotic pacemaker based on an implantable triboelectric nanogenerator, which achieves energy harvesting and storage as well as cardiac pacing on a large-animal scale. The symbiotic pacemaker successfully corrects sinus arrhythmia and prevents deterioration. The open circuit voltage of an implantable triboelectric nanogenerator reaches up to 65.2 V. The energy harvested from each cardiac motion cycle is 0.495 μJ, which is higher than the required endocardial pacing threshold energy (0.377 μJ). Implantable triboelectric nanogenerators for implantable medical devices offer advantages of excellent output performance, high power density, and good durability, and are expected to find application in fields of treatment and diagnosis as in vivo symbiotic bioelectronics.


The prominent alteration in transcriptome and metabolome of Mycobacterium bovis BCG str. Tokyo 172 induced by vitamin B1.

  • Ningning Song‎ et al.
  • BMC microbiology‎
  • 2019‎

Vitamin B1 (VB1) is a crucial dietary nutrient and essential cofactor for several key enzymes in the regulation of cellular and metabolic processes, and more importantly in the activation of immune system. To date, the precise role of VB1 in Mycobacterium tuberculosis remains to be fully understood.


Interleukin-6 deficiency facilitates myocardial dysfunction during high fat diet-induced obesity by promoting lipotoxicity and inflammation.

  • Fan Chen‎ et al.
  • Biochimica et biophysica acta. Molecular basis of disease‎
  • 2017‎

Obesity is associated with metabolic disorder and chronic inflammation that plays a crucial role in cardiovascular diseases. IL-6 is involved in regulating obesity-related lipid metabolism and inflammation. In this study, we sought to determine the role of IL-6 in high-fat diet (HFD)-induced cardiomyopathy and explore the signaling pathway.


The LINC01138 drives malignancies via activating arginine methyltransferase 5 in hepatocellular carcinoma.

  • Zhe Li‎ et al.
  • Nature communications‎
  • 2018‎

Recurrent chromosomal aberrations have led to the discovery of oncogenes or tumour suppressors involved in carcinogenesis. Here we characterized an oncogenic long intergenic non-coding RNA in the frequent DNA-gain regions in hepatocellular carcinoma (HCC), LINC01138 (long intergenic non-coding RNA located on 1q21.2). The LINC01138 locus is frequently amplified in HCC; the LINC01138 transcript is stabilized by insulin like growth factor-2 mRNA-binding proteins 1/3 (IGF2BP1/IGF2BP3) and is associated with the malignant features and poor outcomes of HCC patients. LINC01138 acts as an oncogenic driver that promotes cell proliferation, tumorigenicity, tumour invasion and metastasis by physically interacting with arginine methyltransferase 5 (PRMT5) and enhancing its protein stability by blocking ubiquitin/proteasome-dependent degradation in HCC. The discovery of LINC01138, a promising prognostic indicator, provides insight into the molecular pathogenesis of HCC, and the LINC01138/PRMT5 axis is an ideal therapeutic target for HCC treatment.


Metal-organic framework-coated magnetite nanoparticles for synergistic magnetic hyperthermia and chemotherapy with pH-triggered drug release.

  • Jiajie Chen‎ et al.
  • Science and technology of advanced materials‎
  • 2019‎

In nanoplatform-based tumor treatment, combining chemotherapy with hyperthermia therapy is an interesting strategy to achieve enhanced therapeutic efficacy with low dose of delivery drugs. Compared to photothermal therapy, magnetic hyperthermia has few restrictions on penetrating tissue by an alternating magnetic field, and thereby could cure various solid tumors, even deep-tissue ones. In this work, we proposed to construct magnetic nanocomposites (Fe3O4@PDA@ZIF-90) by the external growth of metal-organic framework ZIF-90 on polydopamine (PDA)-coated Fe3O4 nanoparticles for synergistic magnetic hyperthermia and chemotherapy. In such multifunctional platform, Fe3O4 nanoparticle was utilized as a magnetic heating seed, PDA layer acted as an inducer for the growth of ZIF-90 shell and porous ZIF-90 shell served as drug nanocarrier to load doxorubicin (DOX). The well-defined Fe3O4@PDA@ZIF-90 core-shell nanoparticles were displayed with an average size of ca. 200 nm and possessed the abilities to load high capacity of DOX as well as trigger drug release in a pH-responsive way. Furthermore, the Fe3O4@PDA@ZIF-90 nanoparticles can raise the local temperature to meet hyperthermia condition under an alternating magnetic field owing to the magnetocaloric effect of Fe3O4 cores. In the in vitro experiments, the Fe3O4@PDA@ZIF-90 nanoparticles showed a negligible cytotoxicity to Hela cells. More significantly, after cellular internalization, the DOX-loaded Fe3O4@PDA@ZIF-90 nanoparticles exhibited distinctively synergistic effect to kill tumor cells with higher efficacy compared to chemotherapy or magnetic hyperthermia alone, presenting a great potential for efficient tumor therapy.


Creatine uptake regulates CD8 T cell antitumor immunity.

  • Stefano Di Biase‎ et al.
  • The Journal of experimental medicine‎
  • 2019‎

T cells demand massive energy to combat cancer; however, the metabolic regulators controlling antitumor T cell immunity have just begun to be unveiled. When studying nutrient usage of tumor-infiltrating immune cells in mice, we detected a sharp increase of the expression of a CrT (Slc6a8) gene, which encodes a surface transporter controlling the uptake of creatine into a cell. Using CrT knockout mice, we showed that creatine uptake deficiency severely impaired antitumor T cell immunity. Supplementing creatine to WT mice significantly suppressed tumor growth in multiple mouse tumor models, and the combination of creatine supplementation with a PD-1/PD-L1 blockade treatment showed synergistic tumor suppression efficacy. We further demonstrated that creatine acts as a "molecular battery" conserving bioenergy to power T cell activities. Therefore, our results have identified creatine as an important metabolic regulator controlling antitumor T cell immunity, underscoring the potential of creatine supplementation to improve T cell-based cancer immunotherapies.


The R251Q mutation of LSD1 promotes invasion and migration of luminal breast cancer cells.

  • Yu Zhang‎ et al.
  • International journal of biological macromolecules‎
  • 2020‎

LSD1 (KDM1A), a histone demethylase, plays important roles in breast cancer. The breast cancer patients with LSD1 mutation show significantly worse outcomes compared to those without LSD1 mutation. The R251Q mutation of LSD1 increases the invasion and migration of luminal breast cancer cells. Furthermore, the R251Q mutation of LSD1 alters the expression of genes that modulates the epithelial to mesenchymal transition. Additionally, the R251Q mutation impairs the H3K4me2 demethylation activity of LSD1 by abolishing the interaction between LSD1 and CoREST, which leads to the increased expression of TRIM37, a histone H2A ubiquitin ligase that regulates the expression of E-cadherin. Collectively, our results suggest that the R251Q mutation abolishes the tumor suppressive effects of LSD1 on luminal breast cancer cells by disrupting the formation of functional LSD1/CoREST/HDAC complexes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: