Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Genome-wide identification of Polycomb target genes in human embryonic stem cells.

Gene | 2013

Polycomb group (PcG) proteins are epigenetic regulators that are essential for stem cell differentiation. Identifying PcG binding profiles is important for understanding the mechanisms of PcG-mediated repression in mammals. We used a mapping-convergence (M-C) algorithm using support vector machine (SVM) technology for genome-wide identification of PcG target genes in human embryonic stem cells. The method combined histone modifications and transcription factor binding motifs, eliminating the need for negative training samples as in traditional SVM. Good prediction accuracy comprising 3-fold cross-validation was obtained. In the analysis of 3133 PcG target genes identified by the model, PcG proteins were observed to suppress gene expression during differentiation. The results suggested that PcG and DNA methylation non-redundantly repress gene expression during differentiation. The genome-wide identification of PcG target genes will aid the further analysis of PcG mechanisms.

Pubmed ID: 23313299 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


SISSRs (tool)

RRID:SCR_010866

Anl algorithm for precise identification of binding sites from short reads generated from ChIP-Seq experiments.

View all literature mentions