Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19.

  • Lauren B Rodda‎ et al.
  • Cell‎
  • 2021‎

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is causing a global pandemic, and cases continue to rise. Most infected individuals experience mildly symptomatic coronavirus disease 2019 (COVID-19), but it is unknown whether this can induce persistent immune memory that could contribute to immunity. We performed a longitudinal assessment of individuals recovered from mild COVID-19 to determine whether they develop and sustain multifaceted SARS-CoV-2-specific immunological memory. Recovered individuals developed SARS-CoV-2-specific immunoglobulin (IgG) antibodies, neutralizing plasma, and memory B and memory T cells that persisted for at least 3 months. Our data further reveal that SARS-CoV-2-specific IgG memory B cells increased over time. Additionally, SARS-CoV-2-specific memory lymphocytes exhibited characteristics associated with potent antiviral function: memory T cells secreted cytokines and expanded upon antigen re-encounter, whereas memory B cells expressed receptors capable of neutralizing virus when expressed as monoclonal antibodies. Therefore, mild COVID-19 elicits memory lymphocytes that persist and display functional hallmarks of antiviral immunity.


Impairment of NK cell function by NKG2D modulation in NOD mice.

  • Kouetsu Ogasawara‎ et al.
  • Immunity‎
  • 2003‎

Nonobese diabetic (NOD) mice, a model of insulin-dependent diabetes mellitus, have a defect in natural killer (NK) cell-mediated functions. Here we show impairment in an activating receptor, NKG2D, in NOD NK cells. While resting NK cells from C57BL/6 and NOD mice expressed equivalent levels of NKG2D, upon activation NOD NK cells but not C57BL/6 NK cells expressed NKG2D ligands, which resulted in downmodulation of the receptor. NKG2D-dependent cytotoxicity and cytokine production were decreased because of receptor modulation, accounting for the dysfunction. Modulation of NKG2D was mostly dependent on the YxxM motif of DAP10, the NKG2D-associated adaptor that activates phosphoinositide 3 kinase. These results suggest that NK cells may be desensitized by exposure to NKG2D ligands.


TREM-2 (triggering receptor expressed on myeloid cells 2) is a phagocytic receptor for bacteria.

  • Elsa-Noah N'Diaye‎ et al.
  • The Journal of cell biology‎
  • 2009‎

Phagocytosis, which is essential for the immune response to pathogens, is initiated by specific interactions between pathogens and cell surface receptors expressed by phagocytes. This study identifies triggering receptor expressed on myeloid cells 2 (TREM-2) and its signaling counterpart DAP12 as a molecular complex that promotes phagocytosis of bacteria. Expression of TREM-2-DAP12 enables nonphagocytic Chinese hamster ovary cells to internalize bacteria. This function depends on actin cytoskeleton dynamics and the activity of the small guanosine triphosphatases Rac and Cdc42. Internalization also requires src kinase activity and tyrosine phosphorylation. In bone marrow-derived macrophages, phagocytosis is decreased in the absence of DAP12 and can be restored by expression of TREM-2-DAP12. Depletion of TREM-2 inhibits both binding and uptake of bacteria. Finally, TREM-2-dependent phagocytosis is impaired in Syk-deficient macrophages. This study highlights a novel role for TREM-2-DAP12 in the immune response to bacterial pathogens.


Functional SARS-CoV-2-specific immune memory persists after mild COVID-19.

  • Lauren B Rodda‎ et al.
  • Research square‎
  • 2020‎

The recently emerged SARS-CoV-2 virus is currently causing a global pandemic and cases continue to rise. The majority of infected individuals experience mildly symptomatic coronavirus disease 2019 (COVID-19), but it is unknown whether this can induce persistent immune memory that might contribute to herd immunity. Thus, we performed a longitudinal assessment of individuals recovered from mildly symptomatic COVID-19 to determine if they develop and sustain immunological memory against the virus. We found that recovered individuals developed SARS-CoV-2-specific IgG antibody and neutralizing plasma, as well as virus-specific memory B and T cells that not only persisted, but in some cases increased numerically over three months following symptom onset. Furthermore, the SARS-CoV-2-specific memory lymphocytes exhibited characteristics associated with potent antiviral immunity: memory T cells secreted IFN-γ and expanded upon antigen re-encounter, while memory B cells expressed receptors capable of neutralizing virus when expressed as antibodies. These findings demonstrate that mild COVID-19 elicits memory lymphocytes that persist and display functional hallmarks associated with antiviral protective immunity.


Lupus IgA1 autoantibodies synergize with IgG to enhance pDC responses to RNA-containing immune complexes.

  • Hayley R Waterman‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Autoantibodies to nuclear antigens are hallmarks of the autoimmune disease systemic lupus erythematosus (SLE) where they contribute to pathogenesis. However, there remains a gap in our knowledge regarding how different isotypes of autoantibodies contribute to disease, including the production of the critical type I interferon (IFN) cytokines by plasmacytoid dendritic cells (pDCs) in response to immune complexes (ICs). We focused on IgA, which is the second most prevalent isotype in serum, and along with IgG is deposited in glomeruli in lupus nephritis. Here, we show that individuals with SLE have IgA autoantibodies against most nuclear antigens, correlating with IgG against the same antigen. We investigated whether IgA autoantibodies against a major SLE autoantigen, Smith ribonucleoproteins (Sm/RNPs), play a role in IC activation of pDCs. We found that pDCs express the IgA-specific Fc receptor, FcαR, and there was a striking ability of IgA1 autoantibodies to synergize with IgG in RNA-containing ICs to generate robust pDC IFNα responses. pDC responses to these ICs required both FcαR and FcγRIIa, showing a potent synergy between these Fc receptors. Sm/RNP IC binding to and internalization by pDCs were greater when ICs contained both IgA1 and IgG. In addition, binding of Sm/RNP ICs generated with IgA1-sufficient serum correlated to pDC FcαR expression, but not FcγRIIa expression. Lastly, pDCs from individuals with SLE had higher binding of IgA1-containing ICs and higher expression of FcαR than pDCs from healthy control individuals. Taken together, our data show a new mechanism by which IgA1 anti-nuclear antibodies contribute to SLE pathogenesis.


NKG2D blockade prevents autoimmune diabetes in NOD mice.

  • Kouetsu Ogasawara‎ et al.
  • Immunity‎
  • 2004‎

NKG2D is an activating receptor on CD8(+) T cells and NK cells that has been implicated in immunity against tumors and microbial pathogens. Here we show that RAE-1 is present in prediabetic pancreas islets of NOD mice and that autoreactive CD8(+) T cells infiltrating the pancreas express NKG2D. Treatment with a nondepleting anti-NKG2D monoclonal antibody (mAb) during the prediabetic stage completely prevented disease by impairing the expansion and function of autoreactive CD8(+) T cells. These findings demonstrate that NKG2D is essential for disease progression and suggest a new therapeutic target for autoimmune type I diabetes.


B cell adaptor for PI3-kinase (BCAP) modulates CD8+ effector and memory T cell differentiation.

  • Mark D Singh‎ et al.
  • The Journal of experimental medicine‎
  • 2018‎

CD8+ T cells respond to signals via the T cell receptor (TCR), costimulatory molecules, and immunoregulatory cytokines by developing into diverse populations of effector and memory cells. The relative strength of phosphoinositide 3-kinase (PI3K) signaling early in the T cell response can dramatically influence downstream effector and memory T cell differentiation. We show that initial PI3K signaling during T cell activation results in up-regulation of the signaling scaffold B cell adaptor for PI3K (BCAP), which further potentiates PI3K signaling and promotes the accumulation of CD8+ T cells with a terminally differentiated effector phenotype. Accordingly, BCAP-deficient CD8+ T cells have attenuated clonal expansion and altered effector and memory T cell development following infection with Listeria monocytogenes Thus, induction of BCAP serves as a positive feedback circuit to enhance PI3K signaling in activated CD8+ T cells, thereby acting as a molecular checkpoint regulating effector and memory T cell development.


Overexpression of TLR7 promotes cell-intrinsic expansion and autoantibody production by transitional T1 B cells.

  • Natalia V Giltiay‎ et al.
  • The Journal of experimental medicine‎
  • 2013‎

Toll-like receptor (TLR), a ligand for single-stranded RNA, has been implicated in the development of pathogenic anti-RNA autoantibodies both in systemic lupus erythematous (SLE) patients and in murine models of lupus. It is still unclear, however, where and how TLR7-mediated interactions affect the development of autoreactive B cells. We found that overexpression of TLR7 in transgenic mice (TLR7.1Tg) leads to marked alterations of transitional (T1) B cells, associated with their expansion and proliferation within the splenic red pulp (RP). This phenotype was intrinsic to the T1 subset of B cells and occurred independently of type 1 IFN signals. Overexpression of RNase in TLR7.1Tg mice significantly limited the expansion and proliferation of T1 cells, indicating that endogenous RNA complexes are driving their activation. TLR7.1Tg T1 cells were hyper-responsive to anti-IgM and TLR7 ligand stimulation in vitro and produced high concentrations of class-switched IgG2b and IgG2c, including anti-RNA antibodies. Our results demonstrate that initial TLR7 stimulation of B cells occurs at the T1 stage of differentiation in the splenic RP and suggest that dysregulation of TLR7 expression in T1 cells can result in production of autoantibodies.


TLR-2/TLR-4 TREM-1 signaling pathway is dispensable in inflammatory myeloid cells during sterile kidney injury.

  • Gabriela Campanholle‎ et al.
  • PloS one‎
  • 2013‎

Inflammatory macrophages are abundant in kidney disease, stimulating repair, or driving chronic inflammation and fibrosis. Damage associated molecules (DAMPs), released from injured cells engage pattern recognition receptors (PRRs) on macrophages, contributing to activation. Understanding mechanisms of macrophage activation during kidney injury may lead to strategies to alleviate chronic disease. We identified Triggering-Receptor-in-Myeloid-cells (TREM)-1, a regulator of TLR signaling, as highly upregulated in kidney inflammatory macrophages and tested the roles of these receptors in macrophage activation and kidney disease. Kidney DAMPs activated macrophages in vitro, independently of TREM-1, but partially dependent on TLR-2/-4, MyD88. In two models of progressive interstitial kidney disease, TREM-1 blockade had no impact on disease or macrophage activation in vivo, but TLR-2/-4, or MyD88 deficiency was anti-inflammatory and anti-fibrotic. When MyD88 was mutated only in the myeloid lineage, however, there was no bearing on macrophage activation or disease progression. Instead, TLR-2/-4 or MyD88 deficiency reduced activation of mesenchyme lineage cells resulting in reduced inflammation and fibrosis, indicating that these pathways play dominant roles in activation of myofibroblasts but not macrophages. To conclude, TREM-1, TLR2/4 and MyD88 signaling pathways are redundant in myeloid cell activation in kidney injury, but the latter appear to regulate activation of mesenchymal cells.


NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules.

  • Melissa Lodoen‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

Natural killer (NK) cells play a critical role in the innate immune response against cytomegalovirus (CMV) infections. Although CMV encodes several gene products committed to evasion of adaptive immunity, viral modulation of NK cell activity is only beginning to be appreciated. A previous study demonstrated that the mouse CMV m152-encoded gp40 glycoprotein diminished expression of ligands for the activating NK cell receptor NKG2D on the surface of virus-infected cells. Here we have defined the precise ligands that are affected and have directly implicated NKG2D in immune responses to CMV infection in vitro and in vivo. Murine CMV (MCMV) infection potently induced transcription of all five known retinoic acid early inducible 1 (RAE-1) genes (RAE-1alpha, RAE-1beta, RAE-1delta, RAE-1 epsilon, and RAE-1gamma), but not H-60. gp40 specifically down-regulated the cell surface expression of all RAE-1 proteins, but not H-60, and diminished NK cell interferon gamma production against CMV-infected cells. Consistent with previous findings, a m152 deletion mutant virus (Deltam152) was less virulent in vivo than the wild-type Smith strain of MCMV. Treatment of BALB/c mice with a neutralizing anti-NKG2D antibody before infection increased titers of Deltam152 virus in the spleen and liver to levels seen with wild-type virus. These experiments demonstrate that gp40 impairs NK cell recognition of virus-infected cells through disrupting the RAE-1-NKG2D interaction.


Intravenous nanoparticle vaccination generates stem-like TCF1+ neoantigen-specific CD8+ T cells.

  • Faezzah Baharom‎ et al.
  • Nature immunology‎
  • 2021‎

Personalized cancer vaccines are a promising approach for inducing T cell immunity to tumor neoantigens. Using a self-assembling nanoparticle vaccine that links neoantigen peptides to a Toll-like receptor 7/8 agonist (SNP-7/8a), we show how the route and dose alter the magnitude and quality of neoantigen-specific CD8+ T cells. Intravenous vaccination (SNP-IV) induced a higher proportion of TCF1+PD-1+CD8+ T cells as compared to subcutaneous immunization (SNP-SC). Single-cell RNA sequencing showed that SNP-IV induced stem-like genes (Tcf7, Slamf6, Xcl1) whereas SNP-SC enriched for effector genes (Gzmb, Klrg1, Cx3cr1). Stem-like cells generated by SNP-IV proliferated and differentiated into effector cells upon checkpoint blockade, leading to superior antitumor response as compared to SNP-SC in a therapeutic model. The duration of antigen presentation by dendritic cells controlled the magnitude and quality of CD8+ T cells. These data demonstrate how to optimize antitumor immunity by modulating vaccine parameters for specific generation of effector or stem-like CD8+ T cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: