Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

Immunization with Brugia malayi Myosin as Heterologous DNA Prime Protein Boost Induces Protective Immunity against B. malayi Infection in Mastomys coucha.

  • Jyoti Gupta‎ et al.
  • PloS one‎
  • 2016‎

The current control strategies employing chemotherapy with diethylcarbamazine, ivermectin and albendazole have reduced transmission in some filaria-endemic areas, there is growing interest for complementary approaches, such as vaccines especially in light of threat of parasite developing resistance to mainstay drugs. We earlier demonstrated recombinant heavy chain myosin of B. malayi (Bm-Myo) as a potent vaccine candidate whose efficacy was enhanced by heterologous DNA prime/protein boost (Myo-pcD+Bm-Myo) vaccination in BALB/c mice. BALB/c mouse though does not support the full developmental cycle of B. malayi, however, the degree of protection may be studied in terms of transformation of challenged infective larvae (L3) to next stage (L4) with an ease of delineating the generated immunological response of host. In the current investigation, DNA vaccination with Bm-Myo was therefore undertaken in susceptible rodent host, Mastomys coucha (M. coucha) which sustains the challenged L3 and facilitates their further development to sexually mature adult parasites with patent microfilaraemia. Immunization schedule consisted of Myo-pcD and Myo-pcD+Bm-Myo followed by B. malayi L3 challenge and the degree of protection was evaluated by observing microfilaraemia as well as adult worm establishment. Myo-pcD+Bm-Myo immunized animals not only developed 78.5% reduced blood microfilarial density but also decreased adult worm establishment by 75.3%. In addition, 75.4% of the recovered live females revealed sterilization over those of respective control animals. Myo-pcD+Bm-Myo triggered higher production of specific IgG and its isotypes which induced marked cellular adhesion and cytotoxicity (ADCC) to microfilariae (mf) and L3 in vitro. Both Th1 and Th2 cytokines were significantly up-regulated displaying a mixed immune response conferring considerable protection against B. malayi establishment by engendering a long-lasting effective immune response and therefore emerges as a potential vaccination method against LF.


A detergent-based procedure for the preparation of IgG-like bispecific antibodies in high yield.

  • Jyoti Gupta‎ et al.
  • Scientific reports‎
  • 2016‎

Bispecific antibodies (BsAbs), with the ability to recognize two different epitopes simultaneously, offer remarkable advantages in bioassays, cancer therapy, biosensors, and enzyme electrodes. Preparation and purification of BsAbs in adequate quantities remains a major hurdle in their use in various applications. Poor yield is also the principal limitation in the preparation of BsAbs by the redox procedure. IgG with reduced inter-heavy chain disulfides do not dissociate into half molecules at neutral pH. In this study, we report that the dissociation occurs in presence of sodium dodecyl sulphate (SDS) and inclusion of the detergent during the redox procedure results in remarkable increase in the formation of the BsAbs. Exposure of antibodies to 0.1% (w/v) SDS causes only minor loss in secondary/tertiary structure and the ability to bind the antigen. The BsAbs prepared using the modified redox procedure that recognize the antigens HRP and α-LA were prepared and successfully employed for detecting α-LA in milk/dairy products by ELISA and dot blot techniques. BsAbs were also prepared from partially purified immunoglobulin gamma (IgG). This work shows for the first time that SDS, by dissociating IgG with reduced inter-heavy chain disulfides into half molecules, markedly enhances the formation of BsAbs by the redox procedure.


RNA interference mediated knockdown of Brugia malayi UDP-Galactopyranose mutase severely affects parasite viability, embryogenesis and in vivo development of infective larvae.

  • Sweta Misra‎ et al.
  • Parasites & vectors‎
  • 2017‎

Galactofuranose is an essential cell surface component present in bacteria, fungi and several nematodes such as Caenorhabditis spp., Brugia spp., Onchocerca spp. and Strongyloides spp. This sugar maintains the integrity of parasite surface and is essential for virulence. UDP-Galactopyranose mutase (bmugm) plays a key role in Galf biosynthesis by catalyzing conversion of UDP-Galactopyranose into UDP-galactofuranose and knockout studies of the gene in Leishmania major, Mycobacterium and Aspergillus fumigatus displayed attenuated virulence while RNA interference study in C. elegans exhibited detrimental effects. Presence of UGM in several prokaryotic and eukaryotic microbial pathogens and its absence in higher eukaryotes renders it an attractive drug target. In the present study, RNA interference studies have been carried out to validate bmugm as an antifilarial drug target.


Genomic insights into the fate of colistin resistance and Acinetobacter baumannii during patient treatment.

  • Evan S Snitkin‎ et al.
  • Genome research‎
  • 2013‎

Bacterial whole-genome sequencing (WGS) of human pathogens has provided unprecedented insights into the evolution of antibiotic resistance. Most studies have focused on identification of resistance mutations, leaving one to speculate on the fate of these mutants once the antibiotic selective pressure is removed. We performed WGS on longitudinal isolates of Acinetobacter baumannii from patients undergoing colistin treatment, and upon subsequent drug withdrawal. In each of the four patients, colistin resistance evolved via mutations at the pmr locus. Upon colistin withdrawal, an ancestral susceptible strain outcompeted resistant isolates in three of the four cases. In the final case, resistance was also lost, but by a compensatory inactivating mutation in the transcriptional regulator of the pmr locus. Notably, this inactivating mutation reduced the probability of reacquiring colistin resistance when subsequently challenged in vitro. On face value, these results supported an in vivo fitness cost preventing the evolution of stable colistin resistance. However, more careful analysis of WGS data identified genomic evidence for stable colistin resistance undetected by clinical microbiological assays. Transcriptional studies validated this genomic hypothesis, showing increased pmr expression of the initial isolate. Moreover, altering the environmental growth conditions of the clinical assay recapitulated the classification as colistin resistant. Additional targeted sequencing revealed that this isolate evolved undetected in a patient undergoing colistin treatment, and was then transmitted to other hospitalized patients, further demonstrating its stability in the absence of colistin. This study provides a unique window into mutational pathways taken in response to antibiotic pressure in vivo, and demonstrates the potential for genome sequence data to predict resistance phenotypes.


Immunogenicity and Protective Efficacy of Brugia malayi Heavy Chain Myosin as Homologous DNA, Protein and Heterologous DNA/Protein Prime Boost Vaccine in Rodent Model.

  • Jyoti Gupta‎ et al.
  • PloS one‎
  • 2015‎

We earlier demonstrated the immunoprophylactic efficacy of recombinant heavy chain myosin (Bm-Myo) of Brugia malayi (B. malayi) in rodent models. In the current study, further attempts have been made to improve this efficacy by employing alternate approaches such as homologous DNA (pcD-Myo) and heterologous DNA/protein prime boost (pcD-Myo+Bm-Myo) in BALB/c mouse model. The gene bm-myo was cloned in a mammalian expression vector pcDNA 3.1(+) and protein expression was confirmed in mammalian Vero cell line. A significant degree of protection (79.2%±2.32) against L3 challenge in pcD-Myo+Bm-Myo immunized group was observed which was much higher than that exerted by Bm-Myo (66.6%±2.23) and pcD-Myo (41.6%±2.45). In the heterologous immunized group, the percentage of peritoneal leukocytes such as macrophages, neutrophils, B cells and T cells marginally increased and their population augmented further significantly following L3 challenge. pcD-Myo+Bm-Myo immunization elicited robust cellular and humoral immune responses as compared to pcD-Myo and Bm-Myo groups as evidenced by an increased accumulation of CD4+, CD8+ T cells and CD19+ B cells in the mouse spleen and activation of peritoneal macrophages. Though immunized animals produced antigen-specific IgG antibodies and isotypes, sera of mice receiving pcD-Myo+Bm-Myo or Bm-Myo developed much higher antibody levels than other groups and there was profound antibody-dependent cellular adhesion and cytotoxicity (ADCC) to B. malayi infective larvae (L3). pcD-Myo+Bm-Myo as well as Bm-Myo mice generated a mixed T helper cell phenotype as evidenced by the production of both pro-inflammatory (IL-2, IFN-γ) and anti-inflammatory (IL-4, IL-10) cytokines. Mice receiving pcD-Myo on contrary displayed a polarized pro-inflammatory immune response. The findings suggest that the priming of animals with DNA followed by protein booster generates heightened and mixed pro- and anti-inflammatory immune responses that are capable of providing high degree of protection against filarial larval invasion.


Convulsive seizures from experimental focal cortical dysplasia occur independently of cell misplacement.

  • Lawrence S Hsieh‎ et al.
  • Nature communications‎
  • 2016‎

Focal cortical dysplasia (FCD), a local malformation of cortical development, is the most common cause of pharmacoresistant epilepsy associated with life-long neurocognitive impairments. It remains unclear whether neuronal misplacement is required for seizure activity. Here we show that dyslamination and white matter heterotopia are not necessary for seizure generation in a murine model of type II FCDs. These experimental FCDs generated by increasing mTOR activity in layer 2/3 neurons of the medial prefrontal cortex are associated with tonic-clonic seizures and a normal survival rate. Preventing all FCD-related defects, including neuronal misplacement and dysmorphogenesis, with rapamycin treatments from birth eliminates seizures, but seizures recur after rapamycin withdrawal. In addition, bypassing neuronal misplacement and heterotopia using inducible vectors do not prevent seizure occurrence. Collectively, data obtained using our new experimental FCD-associated epilepsy suggest that life-long treatment to reduce neuronal dysmorphogenesis is required to suppress seizures in individuals with FCD.


Assessment of cognitive and psychomotor domains regarding biomedical waste management and hand hygiene among various categories of health-care professionals at a tertiary care center in Northern India.

  • Ranjana Rohilla‎ et al.
  • Journal of education and health promotion‎
  • 2021‎

Health care-associated infections (HAIs) are associated with high morbidity, mortality, and costs in the health-care sector. Large proportions of HAIs are preventable by following infection prevention activities such as hand hygiene (HH) and biomedical waste management (BMWM).


Dopamine transporter and synaptic vesicle sorting defects underlie auxilin-associated Parkinson's disease.

  • D J Vidyadhara‎ et al.
  • Cell reports‎
  • 2023‎

Auxilin participates in the uncoating of clathrin-coated vesicles (CCVs), thereby facilitating synaptic vesicle (SV) regeneration at presynaptic sites. Auxilin (DNAJC6/PARK19) loss-of-function mutations cause early-onset Parkinson's disease (PD). Here, we utilized auxilin knockout (KO) mice to elucidate the mechanisms through which auxilin deficiency and clathrin-uncoating deficits lead to PD. Auxilin KO mice display cardinal features of PD, including progressive motor deficits, α-synuclein pathology, nigral dopaminergic loss, and neuroinflammation. Significantly, treatment with L-DOPA ameliorated motor deficits. Unbiased proteomic and neurochemical analyses of auxilin KO brains indicated dopamine dyshomeostasis. We validated these findings by demonstrating slower dopamine reuptake kinetics in vivo, an effect associated with dopamine transporter misrouting into axonal membrane deformities in the dorsal striatum. Defective SV protein sorting and elevated synaptic autophagy also contribute to ineffective dopamine sequestration and compartmentalization, ultimately leading to neurodegeneration. This study provides insights into how presynaptic endocytosis deficits lead to dopaminergic vulnerability and pathogenesis of PD.


Antiviral Activity of Zinc Oxide Nanoparticles and Tetrapods Against the Hepatitis E and Hepatitis C Viruses.

  • Jyoti Gupta‎ et al.
  • Frontiers in microbiology‎
  • 2022‎

Hepatitis E virus (HEV) causes an acute, self-limiting hepatitis. The disease takes a severe form in pregnant women, leading to around 30% mortality. Zinc is an essential micronutrient that plays a crucial role in multiple cellular processes. Our earlier findings demonstrated the antiviral activity of zinc salts against HEV infection. Zinc oxide (ZnO) and its nanostructures have attracted marked interest due to their unique characteristics. Here we synthesized ZnO nanoparticles [ZnO(NP)] and tetrapod-shaped ZnO nanoparticles [ZnO(TP)] and evaluated their antiviral activity. Both ZnO(NP) and ZnO(TP) displayed potent antiviral activity against hepatitis E and hepatitis C viruses, with the latter being more effective. Measurement of cell viability and intracellular reactive oxygen species levels revealed that both ZnO(NP) and ZnO(TP) are noncytotoxic to the cells even at significantly higher doses, compared to a conventional zinc salt (ZnSO4). Our study paves the way for evaluation of the potential therapeutic benefit of ZnO(TP) against HEV and HCV.


Hippocampal transplants of fetal GABAergic progenitors regulate adult neurogenesis in mice with temporal lobe epilepsy.

  • Muhammad N Arshad‎ et al.
  • Neurobiology of disease‎
  • 2022‎

GABAergic interneurons play a role in regulating adult neurogenesis within the dentate gyrus (DG) of the hippocampus. Neurogenesis occurs within a stem cell niche in the subgranular zone (SGZ) of the DG. In this niche, populations of neural progenitors give rise to granule cells that migrate radially into the granule cell layer (GCL) of the DG. Altered neurogenesis in temporal lobe epilepsy (TLE) is linked to a transient increase in the proliferation of new neurons and the abnormal inversion of Type 1 progenitors, resulting in ectopic migration of Type 3 progenitors into the hilus of the DG. These ectopic cells mature into granule cells in the hilus that become hyperexcitable and contribute to the development of spontaneous recurrent seizures. To test whether grafts of GABAergic cells in the DG restore synaptic inhibition, prior work focused on transplanting GABAergic progenitors into the hilus of the DG. This cell-based therapeutic approach was shown to alter the disease phenotype by ameliorating spontaneous seizures in mice with pilocarpine-induced TLE. Prior optogenetic and immunohistochemical studies demonstrated that the transplanted GABAergic interneurons increased levels of synaptic inhibition by establishing inhibitory synaptic contacts with adult-born granule cells, consistent with the observed suppression of seizures. Whether GABAergic progenitor transplantation into the DG ameliorates underlying abnormalities in adult neurogenesis caused by TLE is not known. As a first step to address this question, we compared the effects of GABAergic progenitor transplantation on Type 1, Type 2, and Type 3 progenitors in the stem cell niche using cell type-specific molecular markers in naïve, non-epileptic mice. The progenitor transplantation increased GABAergic interneurons in the DG and led to a significant reduction in Type 2 progenitors and a concomitant increase in Type 3 progenitors. Next, we compared the effects of GABAergic interneuron transplantation in epileptic mice. Transplantation of GABAergic progenitors resulted in reductions in inverted Type 1, Type 2, and hilar ectopic Type 3 cells, concomitant with an increase in the radial migration of Type 3 progenitors into the GCL. Thus, in mice with Pilocarpine induced TLE, hilar transplants of GABA interneurons may reverse abnormal patterns of adult neurogenesis, an outcome that may ameliorate seizures.


Pluripotent stem cell-derived interneuron progenitors mature and restore memory deficits but do not suppress seizures in the epileptic mouse brain.

  • Nickesha C Anderson‎ et al.
  • Stem cell research‎
  • 2018‎

GABAergic interneuron dysfunction has been implicated in temporal lobe epilepsy (TLE), autism, and schizophrenia. Inhibitory interneuron progenitors transplanted into the hippocampus of rodents with TLE provide varying degrees of seizure suppression. We investigated whether human embryonic stem cell (hESC)-derived interneuron progenitors (hESNPs) could differentiate, correct hippocampal-dependent spatial memory deficits, and suppress seizures in a pilocarpine-induced TLE mouse model. We found that transplanted ventralized hESNPs differentiated into mature GABAergic interneurons and became electrophysiologically active with mature firing patterns. Some mice developed hESNP-derived tumor-like NSC clusters. Mice with transplants showed significant improvement in the Morris water maze test, but transplants did not suppress seizures. The limited effects of the human GABAergic interneuron progenitor grafts may be due to cell type heterogeneity within the transplants.


CXCL12-mediated guidance of migrating embryonic stem cell-derived neural progenitors transplanted into the hippocampus.

  • Nathaniel W Hartman‎ et al.
  • PloS one‎
  • 2010‎

Stem cell therapies for neurodegenerative disorders require accurate delivery of the transplanted cells to the sites of damage. Numerous studies have established that fluid injections to the hippocampus can induce lesions in the dentate gyrus (DG) that lead to cell death within the upper blade. Using a mouse model of temporal lobe epilepsy, we previously observed that embryonic stem cell-derived neural progenitors (ESNPs) survive and differentiate within the granule cell layer after stereotaxic delivery to the DG, replacing the endogenous cells of the upper blade. To investigate the mechanisms for ESNP migration and repair in the DG, we examined the role of the chemokine CXCL12 in mice subjected to kainic acid-induced seizures. We now show that ESNPs transplanted into the DG show extensive migration through the upper blade, along the septotemporal axis of the hippocampus. Seizures upregulate CXCL12 and infusion of the CXCR4 antagonist AMD3100 by osmotic minipump attenuated ESNP migration. We also demonstrate that seizures promote the differentiation of transplanted ESNPs toward neuronal rather than astrocyte fates. These findings suggest that ESNPs transplanted into the adult rodent hippocampus migrate in response to cytokine-mediated signals.


Staphylococcus epidermidis pan-genome sequence analysis reveals diversity of skin commensal and hospital infection-associated isolates.

  • Sean Conlan‎ et al.
  • Genome biology‎
  • 2012‎

While Staphylococcus epidermidis is commonly isolated from healthy human skin, it is also the most frequent cause of nosocomial infections on indwelling medical devices. Despite its importance, few genome sequences existed and the most frequent hospital-associated lineage, ST2, had not been fully sequenced.


Postnatal cellular contributions of the hippocampus subventricular zone to the dentate gyrus, corpus callosum, fimbria, and cerebral cortex.

  • Ivan Navarro-Quiroga‎ et al.
  • The Journal of comparative neurology‎
  • 2006‎

The rodent dentate gyrus (DG) is formed in the embryo when progenitor cells migrate from the dentate neuroepithelium to establish a germinal zone in the hilus and a secondary germinal matrix, near the fimbria, called the hippocampal subventricular zone (HSVZ). The developmental plasticity of progenitors within the HSVZ is not well understood. To delineate the migratory routes and fates of progenitors within this zone, we injected a replication-incompetent retrovirus, encoding the enhanced green fluorescent protein (EGFP), into the HSVZ of postnatal day 5 (P5) mice. Between P6 and P45, retrovirally-infected EGFP(+) of progenitors migrated into the DG, established a reservoir of progenitor cells, and differentiated into neurons and glia. By P6-7, EGFP(+) cells were observed migrating into the DG. Subsets of these EGFP(+) cells expressed Sox2 and Musashi-1, characteristic of neural stem cells. By P10, EGFP(+) cells assumed positions within the DG and expressed immature neuronal markers. By P20, many EGFP(+) cells expressed the homeobox prospero-like protein Prox1, an early and specific granule cell marker in the CNS, and extended mossy fiber projections into the CA3. A subset of non-neuronal EGFP(+) cells in the dentate gyrus acquired the morphology of astrocytes. Another subset included EGFP(+)/RIP(+) oligodendrocytes that migrated into the fimbria, corpus callosum, and cerebral cortex. Retroviral injections on P15 labeled very few cells, suggesting depletion of HSVZ progenitors by this age. These findings suggest that the early postnatal HSVZ progenitors are multipotent and migratory, and contribute to both dentate gyrus neurogenesis as well as forebrain gliogenesis.


Plakophilin-3 Binds the Membrane and Filamentous Actin without Bundling F-Actin.

  • Jyoti Gupta‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Plakophilin-3 is a ubiquitously expressed protein found widely in epithelial cells and is a critical component of desmosomes. The plakophilin-3 carboxy-terminal domain harbors nine armadillo repeat motifs with largely unknown functions. Here, we report the 5 Å cryogenic electron microscopy (cryoEM) structure of the armadillo repeat motif domain of plakophilin-3, one of the smaller cryoEM structures reported to date. We find that this domain is a monomer or homodimer in solution. In addition, using an in vitro actin co-sedimentation assay, we show that the armadillo repeat domain of plakophilin-3 directly interacts with F-actin. This feature, through direct interactions with actin filaments, could be responsible for the observed association of extra-desmosomal plakophilin-3 with the actin cytoskeleton directly attached to the adherens junctions in A431 epithelial cells. Further, we demonstrate, through lipid binding analyses, that plakophilin-3 can effectively be recruited to the plasma membrane through phosphatidylinositol-4,5-bisphosphate-mediated interactions. Collectively, we report on novel properties of plakophilin-3, which may be conserved throughout the plakophilin protein family and may be behind the roles of these proteins in cell-cell adhesion.


The DNA-PK catalytic subunit regulates Bax-mediated excitotoxic cell death by Ku70 phosphorylation.

  • Jia Liu‎ et al.
  • Brain research‎
  • 2009‎

DNA repair deficiency results in neurodegenerative disease and increased susceptibility to excitotoxic cell death, suggesting a critical but undefined role for DNA damage in neurodegeneration. We compared DNA damage, Ku70-Bax interaction, and Bax-dependent excitotoxic cell death in kainic acid-treated primary cortical neurons derived from both wild-type mice and mice deficient in the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) encoded by the Prkdc gene. In both wild-type and Prkdc(-/-) neurons, kainic acid treatment resulted in rapid induction of DNA damage (53BP1 foci formation) followed by nuclear pyknosis. Bax deficiency, by either Bax shRNA-mediated knockdown or gene deletion, protected wild-type and heterozygous but not Prkdc(-/-) neurons from kainate-induced excitotoxicity. Cotransfection of DNA-PKcs with Bax shRNA restored Bax shRNA-mediated neuroprotection in Prkdc(-/-) neurons, suggesting that DNA-PKcs is required for kainate-induced activation of the pro-apoptotic Bax pathway. Immunoprecipitation studies revealed that the DNA-PKcs-nonphosphorylatable Ku70 (S6A/S51A) bound 3- to 4-fold greater Bax than wild-type Ku70, suggesting that DNA-PKcs-mediated Ku70 phosphorylation causes release of Bax from Ku70. In support of this, kainic acid induced translocation of a Bax-EGFP fusion protein to the mitochondria in the presence of a cotransfected wild-type, but not mutant Ku70 (S6A/S51A) gene when examined at 4 and 8 h following kainate addition. We conclude that DNA-PKcs links DNA damage to Bax-dependent excitotoxic cell death, by phosphorylating Ku70 on serines 6 and/or 51, to initiate Bax translocation to the mitochondria and directly activate a pro-apoptotic Bax-dependent death cascade.


FBG1 Is the Final Arbitrator of A1AT-Z Degradation.

  • John H Wen‎ et al.
  • PloS one‎
  • 2015‎

Alpha-1 antitrypsin deficiency is the leading cause of childhood liver failure and one of the most common lethal genetic diseases. The disease-causing mutant A1AT-Z fails to fold correctly and accumulates in the endoplasmic reticulum (ER) of the liver, resulting in hepatic fibrosis and hepatocellular carcinoma in a subset of patients. Furthermore, A1AT-Z sequestration in hepatocytes leads to a reduction in A1AT secretion into the serum, causing panacinar emphysema in adults. The purpose of this work was to elucidate the details by which A1AT-Z is degraded in hepatic cell lines. We identified the ubiquitin ligase FBG1, which has been previously shown to degrade proteins by both the ubiquitin proteasome pathway and autophagy, as being key to A1AT-Z degradation. Using chemical and genetic approaches we show that FBG1 degrades A1AT-Z through both the ubiquitin proteasome system and autophagy. Overexpression of FBG1 decreases the half-life of A1AT-Z and knocking down FBG1 in a hepatic cell line, and in mice results in an increase in ATAT. Finally, we show that FBG1 degrades A1AT-Z through a Beclin1-dependent arm of autophagy. In our model, FBG1 acts as a safety ubiquitin ligase, whose function is to re-ubiquitinate ER proteins that have previously undergone de-ubiquitination to ensure they are degraded.


Curcumin Oxidation Is Required for Inhibition of Helicobacter pylori Growth, Translocation and Phosphorylation of Cag A.

  • Ashwini Kumar Ray‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2021‎

Curcumin is a potential natural remedy for preventing Helicobacter pylori-associated gastric inflammation and cancer. Here, we analyzed the effect of a phospholipid formulation of curcumin on H. pylori growth, translocation and phosphorylation of the virulence factor CagA and host protein kinase Src in vitro and in an in vivo mouse model of H. pylori infection. Growth of H. pylori was inhibited dose-dependently by curcumin in vitro. H. pylori was unable to metabolically reduce curcumin, whereas two enterobacteria, E. coli and Citrobacter rodentium, which efficiently reduced curcumin to the tetra- and hexahydro metabolites, evaded growth inhibition. Oxidative metabolism of curcumin was required for the growth inhibition of H. pylori and the translocation and phosphorylation of CagA and cSrc, since acetal- and diacetal-curcumin that do not undergo oxidative transformation were ineffective. Curcumin attenuated mRNA expression of the H. pylori virulence genes cagE and cagF in a dose-dependent manner and inhibited translocation and phosphorylation of CagA in gastric epithelial cells. H. pylori strains isolated from dietary curcumin-treated mice showed attenuated ability to induce cSrc phosphorylation and the mRNA expression of the gene encoding for IL-8, suggesting long-lasting effects of curcumin on the virulence of H. pylori. Our work provides mechanistic evidence that encourages testing of curcumin as a dietary approach to inhibit the virulence of CagA.


Oxidative Products of Curcumin Rather Than Curcumin Bind to Helicobacter Pylori Virulence Factor VacA and Are Required to Inhibit Its Vacuolation Activity.

  • Maya Chaturvedi‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Curcumin is a hydrophobic polyphenol derived from turmeric with potent anti-oxidant, anti-microbial, anti-inflammatory and anti-carcinogenic effects. Curcumin is degraded into various derivatives under in vitro and in vivo conditions, and it appears that its degradation may be responsible for the pharmacological effects of curcumin. The primary risk factor for the cause of gastric cancer is Helicobacter pylori (H. pylori). A virulence factor vacuolating cytotoxic A (VacA) is secreted by H. pylori as a 88 kDa monomer (p88), which can be fragmented into a 33 kDa N-terminal domain (p33) and a 55 kDa C-terminal domain (p55). Recently it has been reported that curcumin oxidation is required to inhibit the activity of another major H.pylori toxin CagA. We performed molecular docking of curcumin and its oxidative derivatives with p33 and p55 domains of VacA. Further, we have examined the effect of the oxidation of curcumin on the vacuolation activity of VacA protein. We observed the binding of curcumin to the p55 domain of VacA at five different sites with moderate binding affinities. Curcumin did not bind to p33 domain of VacA. Remarkably, cyclobutyl cyclopentadione and dihydroxy cyclopentadione, which are oxidized products of curcumin, showed a higher binding affinity with VacA protein at all sites except one as compared to parent curcumin itself. However, cyclobutyl cyclopentadione showed a significant binding affinity for the active site 5 of the p55 protein. Active site five (312-422) of p55 domain of VacA plays a crucial role in VacA-mediated vacuole formation. Invitro experiments showed that curcumin inhibited the vacuolation activity of H. pylori in human gastric cell line AGS cells whereas acetyl and diacetyl curcumin, which cannot be oxidized, failed to inhibit the vacuolation in AGS cells after H. pylori infection. Here our data showed that oxidation is essential for the activity of curcumin in inhibiting the vacuolation activity of H. pylori. Synthesis of these oxidized curcumin derivatives could potentially provide new therapeutic drug molecules for inhibiting H. pylori-mediated pathogenesis.


Outbred CD1 mice are as suitable as inbred C57BL/6J mice in performing social tasks.

  • Lawrence S Hsieh‎ et al.
  • Neuroscience letters‎
  • 2017‎

Inbred mouse strains have been used preferentially for behavioral testing over outbred counterparts, even though outbred mice reflect the genetic diversity in the human population better. Here, we compare the sociability of widely available outbred CD1 mice with the commonly used inbred C57BL/6J (C57) mice in the one-chamber social interaction test and the three-chamber sociability test. In the one-chamber task, intra-strain pairs of juvenile, non-littermate, male CD1 or C57 mice display a series of social and aggressive behaviors. While CD1 and C57 pairs spend equal amount of time socializing, CD1 pairs spend significantly more time engaged in aggressive behaviors than C57 mice. In the three-chamber task, sociability of C57 mice was less dependent on acclimation paradigms than CD1 mice. Following acclimation to all three chambers, both groups of age-matched male mice spent more time in the chamber containing a stranger mouse than in the empty chamber, suggesting that CD1 mice are sociable like C57 mice. However, the observed power suggests that it is easier to achieve statistical significance with C57 than CD1 mice. Because the stranger mouse could be considered as a novel object, we assessed for a novelty effect by adding an object. CD1 mice spend more time in the chamber with a stranger mouse than that a novel object, suggesting that their preference is social in nature. Thus, outbred CD1 mice are as appropriate as inbred C57 mice for studying social behavior using either the single or the three-chamber test using a specific acclimation paradigm.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: