Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Generation of an Induced pluripotent stem cell (iPSC) line (IGIBi011-A) from a Spinocerebellar ataxia type 12 gait dominant patient.

  • Sana Zahra‎ et al.
  • Stem cell research‎
  • 2024‎

The PPP2R2B gene, expressed highly in the brain, harbours trinucleotide CAG repeats in the 5'UTR region, in the range of 7-42 repeats. Individuals carrying CAG repeats greater than 43 have been associated to manifest a neurodegenerative disease condition termed as Spinocerebellar Ataxia type 12 (SCA12). An iPSC line from an adult male diagnosed with SCA12 presenting symptoms of gait (Gait Dominance) was generated. It showed pluripotency and trilineage markers without any chromosomal abnormality. This line can be utilized as an essential resource in enhancing our understanding of the molecular pathogenic mechanisms underlying SCA12 by facilitating generation of various neuronal cell types.


Generation and characterization of iPSC lines from Friedreich's ataxia patient (FRDA) with GAA.TTC repeat expansion in the Frataxin (FXN) gene's first intron (IGIBi016-A) and a non-FRDA healthy control individual (IGIBi017-A).

  • Istaq Ahmad‎ et al.
  • Stem cell research‎
  • 2024‎

Friedreich's ataxia is a spinocerebellar degenerative disease caused by microsatellite (GAA.TTC)n repeat expansion in the first intron of FXN gene. Here, we developed iPSC lines from an FRDA patient (IGIBi016-A) and non-FRDA healthy control (IGIBi017-A). Both iPSC lines displayed typical iPSC morphology, expression of pluripotency markers, regular karyotypes (46, XY; 46, XX), capacity to grow into three germ layers, and FRDA hallmark -GAA repeat expansion and decreased FXN mRNA. Through these iPSC lines, FRDA phenotypes may be replicated in the in vitro assays, by creating neuron subtypes, cardiomyocytes and 3D organoids, for molecular and cellular biomarkers and therapeutic applications.


Generation and characterization of two human iPSC lines, IGIBi014-A and IGIBi015-A, from Friedreich's ataxia (FRDA) patients with pathogenic (GAA/TTC)n repeat expansion in first intron of the Frataxin (FXN) gene.

  • Istaq Ahmad‎ et al.
  • Stem cell research‎
  • 2024‎

Friedreich's ataxia (FRDA) is a rare neurodegenerativedisorder caused by over expansion of GAA repeats in thefirstintron ofFXN gene. Here, we generated two iPSC lines from FRDA patients with biallelic expansion of GAA repeats in the first intron ofFXNgene.IGIBi014-A and IGIBi015-Aboth iPSC lines demonstrated characteristics of pluripotency, normal karyotypes (46, XY),the capacity to differentiate into all three germ layers, and the ability to sustain the GAA repeat expansion with decreased FXN mRNA expression. These cell lines will be utilized to comprehend the pathophysiology of the illness and the FRDA's predictive phenotypes.


Lab resource: Single cell line generation and characterization of a human-derived induced pluripotent stem cell line (IGIBi005-A) from a patient with spastic paraplegia/ataxia/ALS phenotype due to the mutation of the gene Kinesin Family Member 5A (KIF5A).

  • Istaq Ahmad‎ et al.
  • Stem cell research‎
  • 2022‎

Human Kinesin Family Member 5A (KIF5A) gene mutations have been identified as a putative genetic cause of amyotrophic lateral sclerosis (ALS). Disease modelling using human-induced pluripotent stem cells (HiPSCs) is the next-generation approach to studying numerous human diseases. For the current investigation, we report the generation of patient-specific KIF5A iPSC lines with a mutation at the splice site mutation (c.3020 + 3 A > T) in the intronic region. The resulting line displayed markers for pluripotency, a healthy karyotype, the ability to differentiate into three germ layers in vitro, vector clearance, the KIF5A mutation, STR-based genomic identity, and contamination-free culture.


Generation of induced pluripotent stem cell line (IGIBi007-A) from a patient with a novel acromesomelic dysplasia, PRKG2 type (AMDP).

  • Manish Kumar‎ et al.
  • Stem cell research‎
  • 2021‎

Biallelic PRKG2 (Protein Kinase, cGMP dependent Type-2) mutations cause a novel acromesomelic dysplasia PRKG2 type. We report generation of induced pluripotent stem cell line from lymphoblastoid cell lines of the patient carrying the reported frameshift mutation (p.Asn164Lysfs*2). The derived iPSC line exhibits all the features of pluripotency, free of major genetic alterations due to reprogramming process and has the capability to differentiate into three germ layers. This iPSC cell line may provide an opportunity to investigate the effect of PRKG2 mutations upon FGF (fibroblast-growth-factor) induced MAPK signalling involved in chondrocyte proliferation in-vitro and may aid in possible therapeutic screening of novel biomolecules.


Generation of two induced pluripotent stem cell (iPSC) lines from patients with Duchenne muscular dystrophy (IGIBi006-A and IGIBi008-A) carrying exonic deletions in the dystrophin gene.

  • Istaq Ahmad‎ et al.
  • Stem cell research‎
  • 2022‎

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder with defect in dystrophin gene that shows features of degeneration of muscle tissue at an early age. Here, we describe iPSC lines generated from LCL of two patients of Indian origin carrying 46-48 and 49-50 exons deletions in DMD. The resulting iPSC lines IGIBi006-A and IGIBi008-A showed all the characteristic features of pluripotency, differentiated into cells of three germ layers in vitro and have no major genetic alterations due to reprogramming process. These lines can serve as a useful cell model for studying disease pathogenesis and will aid in precision therapy.


Generation of two human induced pluripotent stem cell lines, IGIBi012-A and IGIBi013-A from Friedreich's ataxia (FRDA) patients with homozygous GAA repeat expansion in FXN gene.

  • Istaq Ahmad‎ et al.
  • Stem cell research‎
  • 2024‎

Friedreich's ataxia is a neurodegenerative disorder caused by the hyper expansion of (GAA-TTC)n triplet repeats in the first intron of the FXN gene. Here, we generated iPSC lines from two individuals with FRDA, both of whom have homozygous GAA repeat expansion in the first intron of FXN gene. Both iPSC lines demonstrated characteristics of pluripotency, including expression of pluripotency markers, stable karyotypes and ability to develop into all three germ layers, and presence of GAA repeat expansion with reduced FXN mRNA expression. These iPSC lines will serve as invaluable tools for investigating the pathophysiology and phenotypes of FRDA.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: