Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 156 papers

Composition and Interactions of Hepatitis B Virus Quasispecies Defined the Virological Response During Telbivudine Therapy.

  • Bin Zhou‎ et al.
  • Scientific reports‎
  • 2015‎

Reverse transcriptase (RT) mutations contribute to hepatitis B virus resistance during antiviral therapy with nucleos(t)ide analogs. However, the composition of the RT quasispecies and their interactions during antiviral treatment have not yet been thoroughly defined. In this report, 10 patients from each of 3 different virological response groups, i.e., complete virological response, partial virological response and virological breakthrough, were selected from a multicenter trial of Telbivudine treatment. Variations in the drug resistance-related critical RT regions in 107 serial serum samples from the 30 patients were examined by ultra-deep sequencing. A total of 496,577 sequence reads were obtained, with an average sequencing coverage of 4,641X per sample. The phylogenies of the quasispecies revealed the independent origins of two critical quasispecies, i.e., the rtA181T and rtM204I mutants. Data analyses and theoretical modeling showed a cooperative-competitive interplay among the quasispecies. In particular, rtM204I mutants compete against other quasispecies, which eventually leads to virological breakthrough. However, in the absence of rtM204I mutants, synergistic growth of the drug-resistant rtA181T mutants with the wild-type quasispecies could drive the composition of the viral population into a state of partial virological response. Furthermore, we demonstrated that the frequency of drug-resistant mutations in the early phase of treatment is important for predicting the virological response to antiviral therapy.


Whole genome sequencing revealed host adaptation-focused genomic plasticity of pathogenic Leptospira.

  • Yinghua Xu‎ et al.
  • Scientific reports‎
  • 2016‎

Leptospirosis, caused by pathogenic Leptospira spp., has recently been recognized as an emerging infectious disease worldwide. Despite its severity and global importance, knowledge about the molecular pathogenesis and virulence evolution of Leptospira spp. remains limited. Here we sequenced and analyzed 102 isolates representing global sources. A high genomic variability were observed among different Leptospira species, which was attributed to massive gene gain and loss events allowing for adaptation to specific niche conditions and changing host environments. Horizontal gene transfer and gene duplication allowed the stepwise acquisition of virulence factors in pathogenic Leptospira evolved from a recent common ancestor. More importantly, the abundant expansion of specific virulence-related protein families, such as metalloproteases-associated paralogs, were exclusively identified in pathogenic species, reflecting the importance of these protein families in the pathogenesis of leptospirosis. Our observations also indicated that positive selection played a crucial role on this bacteria adaptation to hosts. These novel findings may lead to greater understanding of the global diversity and virulence evolution of Leptospira spp.


Tracking Cefoperazone/Sulbactam Resistance Development In vivo in A. baumannii Isolated from a Patient with Hospital-Acquired Pneumonia by Whole-Genome Sequencing.

  • Xiaofen Liu‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Cefoperazone/sulbactam has been shown to be efficacious for the treatment of infections caused by Acinetobacter baumannii; however, the mechanism underlying resistance to this synergistic combination is not well understood. In the present study, two A. baumannii isolates, AB1845 and AB2092, were isolated from a patient with hospital-acquired pneumonia before and after 20 days of cefoperazone/sulbactam therapy (2:1, 3 g every 8 h with a 1-h infusion). The minimum inhibitory concentration (MIC) of cefoperazone/sulbactam for AB1845 and AB2092 was 16/8 and 128/64 mg/L, respectively. Blood samples were collected on day 4 of the treatment to determine the concentration of cefoperazone and sulbactam. The pharmacokinetic/pharmacodynamic (PK/PD) indices (%T>MIC) were calculated to evaluate the dosage regimen and resistance development. The results showed that %T>MIC of cefoperazone and sulbactam was 100% and 34.5% for AB1845, and 0% and 0% for AB2092, respectively. Although there was no available PK/PD target for sulbactam, it was proposed that sulbactam should be administered at higher doses or for prolonged infusion times to achieve better efficacy. To investigate the mechanism of A. baumannii resistance to the cefoperazone/sulbactam combination in vivo, whole-genome sequencing of these two isolates was further performed. The sequencing results showed that 97.6% of the genome sequences were identical and 33 non-synonymous mutations were detected between AB1845 and AB2092. The only difference of these two isolates was showed in sequencing coverage comparison. There was a 6-kb amplified DNA fragment which was three times higher in AB2092, compared with AB1845. The amplified DNA fragment containing the bla OXA-23 gene on transposon Tn2009. Further quantitative real-time PCR results demonstrated that gene expression at the mRNA level of bla OXA-23 was >5 times higher in AB2092 than in AB1845. These results suggested that the bla OXA-23 gene had higher expression level in AB2092 via gene amplification and following transcription. Because gene amplification plays a critical role in antibiotic resistance in many bacteria, it is very likely that the bla OXA-23 amplification results in the development of cefoperazone/sulbactam resistance in vivo.


Echinococcus granulosus Infection Results in an Increase in Eisenbergiella and Parabacteroides Genera in the Gut of Mice.

  • Jianling Bao‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Cystic echinococcosis (CE) is a chronic infectious disease caused by Echinococcus granulosus. To confirm whether the infection impacts on the gut microbiota, we established a mouse model of E. granulosus infection in this study whereby BALB/c mice were infected with micro-cysts of E. granulosus. After 4 months of infection, fecal samples were collected for high-throughput sequencing of the hypervariable regions of the 16S rRNA gene. Sequence analysis revealed a total of 13,353 operational taxonomic units (OTUs) with only 40.6% of the OTUs having genera reference information and 101 of the OTUs were significantly increased in infected mice. Bioinformatics analysis showed that the common core microbiota were not significantly changed at family level. However, two genera (Eisenbergiella and Parabacteroides) were enriched in the infected mice (P AMOV A < 0.05) at genus level. Functional analysis indicated that seven pathways were altered in the E. granulosus Infection Group compared with the Uninfected Group. Spearman correlation analysis showed strong correlations of IgG, IgG1 and IgG2a with nine major genera. E. granulosus cyst infection may change the gut microbiota which may be associated with metabolic pathways.


Crude Oil Degrading Fingerprint and the Overexpression of Oxidase and Invasive Genes for n-hexadecane and Crude Oil Degradation in the Acinetobacter pittii H9-3 Strain.

  • Yang Wang‎ et al.
  • International journal of environmental research and public health‎
  • 2019‎

A crude oil-degrading bacterium named strain H9-3 was isolated from crude oil contaminated soil in the Northeastern area of China. Based on its morphological characteristics and 16S rDNA sequence analysis, strain H9-3 is affiliated to Acinetobacter pittii in the group of Gammaproteobacteria. The strain was efficient in removing 36.8% of the initial 10 g·L - 1 of crude oil within 21 days. GC-MS was performed and a preference was shown for n-C10, n-C11, i-C14, i-C17, i-C34, n-C12, n-C13, n-C14, n-C27, n-C32 and i-C13, over n-C16, n-C18⁻C22, n-C24⁻n-C31, and n-C36. This can be regarded as the specific fingerprint for crude oil degradation by strain H9-3 of Acinetobacter pittii. In addition to crude oil, it was shown that soybean oil and phenols can be utilized as carbon sources by strain H9-3. It was also shown that aniline and α -naphthol cannot be utilized for growth, but they can be tolerated by strain H9-3. Methylbenzene was neither utilized nor tolerated by strain H9-3. Although n-hexadecane was not preferentially consumed by strain H9-3, during culture with crude oil, it could be utilized for growth when it is the sole carbon source. The degradation of some branched alkanes (i-C14, i-C17 and i-C34) and the preferential degradation of crude oil over phenols could be used as a reference for distinguishing A. pittii from A. calcoaceticus. The difference in gene expression was very significant and was induced by diverse carbon sources, as shown in the qRT-PCR results. The oxidation and adhesion events occurred at high frequency during alkane degration by Acinetobacter pittii strain H9-3 cells.


Stability and anti-tumor effect of oncolytic herpes simplex virus type 2.

  • Yang Wang‎ et al.
  • Oncotarget‎
  • 2018‎

Oncolytic virotherapy is a new therapeutic strategy based on the inherent cytotoxicity of viruses and their ability to replicate and spread in tumors in a selective manner. We constructed a new type of oncolytic herpes simplex virus type 2 (oHSV-2, named OH2) to treat human cancers, but a systematic evaluation of the stability and oncolytic ability of this virus is lacking. In this study, we evaluated its physical stability, gene modification stability and biological characteristics stability, including its anti-tumor activity in an animal model. The physical characteristics as well as genetic deletions and insertions in OH2 were stable, and the anti-tumor activity remained stable even after passage of the virus for more than 20 generations. In conclusion, OH2 is a virus that has stable structural and biological traits. Furthermore, OH2 is a potent oncolytic agent against tumor cells.


Duplication of a Pks gene cluster and subsequent functional diversification facilitate environmental adaptation in Metarhizium species.

  • Guohong Zeng‎ et al.
  • PLoS genetics‎
  • 2018‎

The ecological importance of the duplication and diversification of gene clusters that synthesize secondary metabolites in fungi remains poorly understood. Here, we demonstrated that the duplication and subsequent diversification of a gene cluster produced two polyketide synthase gene clusters in the cosmopolitan fungal genus Metarhizium. Diversification occurred in the promoter regions and the exon-intron structures of the two Pks paralogs (Pks1 and Pks2). These two Pks genes have distinct expression patterns, with Pks1 highly expressed during conidiation and Pks2 highly expressed during infection. Different upstream signaling pathways were found to regulate the two Pks genes. Pks1 is positively regulated by Hog1-MAPK, Slt2-MAPK and Mr-OPY2, while Pks2 is positively regulated by Fus3-MAPK and negatively regulated by Mr-OPY2. Pks1 and Pks2 have been subjected to positive selection and synthesize different secondary metabolites. PKS1 is involved in synthesis of an anthraquinone derivative, and contributes to conidial pigmentation, which plays an important role in fungal tolerance to UV radiation and extreme temperatures. Disruption of the Pks2 gene delayed formation of infectious structures and increased the time taken to kill insects, indicating that Pks2 contributes to pathogenesis. Thus, the duplication of a Pks gene cluster and its subsequent functional diversification has increased the adaptive flexibility of Metarhizium species.


Insights into hepatopancreatic functions for nutrition metabolism and ovarian development in the crab Portunus trituberculatus: gene discovery in the comparative transcriptome of different hepatopancreas stages.

  • Wei Wang‎ et al.
  • PloS one‎
  • 2014‎

The crustacean hepatopancreas has different functions including absorption, storage of nutrients and vitellogenesis during growth, and ovarian development. However, genetic information on the biological functions of the crustacean hepatopancreas during such processes is limited. The swimming crab, Portunus trituberculatus, is a commercially important species for both aquaculture and fisheries in the Asia-Pacific region. This study compared the transcriptome in the hepatopancreas of female P. trituberculatus during the growth and ovarian maturation stages by 454 high-throughput pyrosequencing and bioinformatics. The goal was to discover genes in the hepatopancreas involved in food digestion, nutrition metabolism and ovarian development, and to identify patterns of gene expression during growth and ovarian maturation. Our transcriptome produced 303,450 reads with an average length of 351 bp, and the high quality reads were assembled into 21,635 contigs and 31,844 singlets. Based on BLASTP searches of the deduced protein sequences, there were 7,762 contigs and 4,098 singlets with functional annotation. Further analysis revealed 33,427 unigenes with ORFs, including 17,388 contigs and 16,039 singlets in the hepatopancreas, while only 7,954 unigenes (5,691 contigs and 2,263 singlets) with the predicted protein sequences were annotated with biological functions. The deduced protein sequences were assigned to 3,734 GO terms, 25 COG categories and 294 specific pathways. Furthermore, there were 14, 534, and 22 identified unigenes involved in food digestion, nutrition metabolism and ovarian development, respectively. 212 differentially expressed genes (DEGs) were found between the growth and endogenous stage of the hepatopancreas, while there were 382 DEGs between the endogenous and exogenous stage hepatopancreas. Our results not only enhance the understanding of crustacean hepatopancreatic functions during growth and ovarian development, but also represent a basis for further research on new genes and functional genomics of P. trituberculatus or closely related species.


Complete genome sequence and comparative genomic analyses of the vancomycin-producing Amycolatopsis orientalis.

  • Li Xu‎ et al.
  • BMC genomics‎
  • 2014‎

Amycolatopsis orientalis is the type species of the genus and its industrial strain HCCB10007, derived from ATCC 43491, has been used for large-scale production of the vital antibiotic vancomycin. However, to date, neither the complete genomic sequence of this species nor a systemic characterization of the vancomycin biosynthesis cluster (vcm) has been reported. With only the whole genome sequence of Amycolatopsis mediterranei available, additional complete genomes of other species may facilitate intra-generic comparative analysis of the genus.


PAX3 in neuroblastoma: oncogenic potential, chemosensitivity and signalling pathways.

  • Wen-Hui Fang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2014‎

Transcription factor PAX3/Pax3 contributes to diverse cell lineages during embryonic development and is important in tumourigenesis. We found that PAX3 is re-expressed in neuroblastoma and malignant neuroblastic (N-type) neuroblastoma cells had significantly higher PAX3 protein expression than their benign substrate-adherent (S-type) counterparts. Knock-down of PAX3 expression by siRNA transfection resulted in persistent cell growth inhibition in both types of neuroblastoma cell, owing to G1 cell cycle arrest and progressive apoptosis. Inhibition of PAX3 expression significantly decreased the attachment of S-type SH-EP1 cells to extra-cellular matrix proteins, fibronectin, laminin and collagen IV. Migration and invasion of both neuroblastoma cell types were markedly reduced after PAX3 down-regulation. PAX3 knock-down significantly augmented the cytotoxic effect of chemotherapeutic agents, etoposide, vincristine and cisplatin, commonly used to treat neuroblastoma. Microarray analyses revealed that particularly signalling pathways involving cell cycle, apoptosis, cell adhesion, cytoskeletal remodelling and development were altered by PAX3 down-regulation. Changes in PAX3 downstream genes identified by microarray analyses were validated in 47 genes by quantitative PCR. These novel findings lead us to propose that PAX3 might contribute to oncogenic characteristics of neuroblastoma cells by regulating a variety of crucial signalling pathways.


Evolution of the chitin synthase gene family correlates with fungal morphogenesis and adaption to ecological niches.

  • Ran Liu‎ et al.
  • Scientific reports‎
  • 2017‎

The fungal kingdom potentially has the most complex chitin synthase (CHS) gene family, but evolution of the fungal CHS gene family and its diversification to fulfill multiple functions remain to be elucidated. Here, we identified the full complement of CHSs from 231 fungal species. Using the largest dataset to date, we characterized the evolution of the fungal CHS gene family using phylogenetic and domain structure analysis. Gene duplication, domain recombination and accretion are major mechanisms underlying the diversification of the fungal CHS gene family, producing at least 7 CHS classes. Contraction of the CHS gene family is morphology-specific, with significant loss in unicellular fungi, whereas family expansion is lineage-specific with obvious expansion in early-diverging fungi. ClassV and ClassVII CHSs with the same domain structure were produced by the recruitment of domains PF00063 and PF08766 and subsequent duplications. Comparative analysis of their functions in multiple fungal species shows that the emergence of ClassV and ClassVII CHSs is important for the morphogenesis of filamentous fungi, development of pathogenicity in pathogenic fungi, and heat stress tolerance in Pezizomycotina fungi. This work reveals the evolution of the fungal CHS gene family, and its correlation with fungal morphogenesis and adaptation to ecological niches.


Integrative Pathway Analysis of Genes and Metabolites Reveals Metabolism Abnormal Subpathway Regions and Modules in Esophageal Squamous Cell Carcinoma.

  • Chunquan Li‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2017‎

Aberrant metabolism is one of the main driving forces in the initiation and development of ESCC. Both genes and metabolites play important roles in metabolic pathways. Integrative pathway analysis of both genes and metabolites will thus help to interpret the underlying biological phenomena. Here, we performed integrative pathway analysis of gene and metabolite profiles by analyzing six gene expression profiles and seven metabolite profiles of ESCC. Multiple known and novel subpathways associated with ESCC, such as 'beta-Alanine metabolism', were identified via the cooperative use of differential genes, differential metabolites, and their positional importance information in pathways. Furthermore, a global ESCC-Related Metabolic (ERM) network was constructed and 31 modules were identified on the basis of clustering analysis in the ERM network. We found that the three modules located just to the center regions of the ERM network-especially the core region of Module_1-primarily consisted of aldehyde dehydrogenase (ALDH) superfamily members, which contributes to the development of ESCC. For Module_4, pyruvate and the genes and metabolites in its adjacent region were clustered together, and formed a core region within the module. Several prognostic genes, including GPT, ALDH1B1, ABAT, WBSCR22 and MDH1, appeared in the three center modules of the network, suggesting that they can become potentially prognostic markers in ESCC.


Digital karyotyping reveals probable target genes at 7q21.3 locus in hepatocellular carcinoma.

  • Hui Dong‎ et al.
  • BMC medical genomics‎
  • 2011‎

Hepatocellular carcinoma (HCC) is a worldwide malignant liver tumor with high incidence in China. Subchromosomal amplifications and deletions accounted for major genomic alterations occurred in HCC. Digital karyotyping was an effective method for analyzing genome-wide chromosomal aberrations at high resolution.


Transcriptome analysis in sheepgrass (Leymus chinensis): a dominant perennial grass of the Eurasian Steppe.

  • Shuangyan Chen‎ et al.
  • PloS one‎
  • 2013‎

Sheepgrass [Leymus chinensis (Trin.) Tzvel.] is an important perennial forage grass across the Eurasian Steppe and is known for its adaptability to various environmental conditions. However, insufficient data resources in public databases for sheepgrass limited our understanding of the mechanism of environmental adaptations, gene discovery and molecular marker development.


Altered Gut Microbiota Composition Associated with Eczema in Infants.

  • Huajun Zheng‎ et al.
  • PloS one‎
  • 2016‎

Eczema is frequently the first manifestation of an atopic diathesis and alteration in the diversity of gut microbiota has been reported in infants with eczema. To identify specific bacterial communities associated with eczema, we conducted a case-control study of 50 infants with eczema (cases) and 51 healthy infants (controls). We performed high-throughput sequencing for V3-V4 hypervariable regions of the 16S rRNA genes from the gut fecal material. A total of 12,386 OTUs (operational taxonomic units) at a 97% similarity level were obtained from the two groups, and we observed a difference in taxa abundance, but not the taxonomic composition, of gut microbiota between the two groups. We identified four genera enriched in healthy infants: Bifidobacterium, Megasphaera, Haemophilus and Streptococcus; and five genera enriched in infants with eczema: Escherichia/Shigella, Veillonella, Faecalibacterium, Lachnospiraceae incertae sedis and Clostridium XlVa. Several species, such as Faecalibacterium prausnitzii and Ruminococcus gnavus, that are known to be associated with atopy or inflammation, were found to be significantly enriched in infants with eczema. Higher abundance of Akkermansia muciniphila in eczematous infants might reduce the integrity of intestinal barrier function and therefore increase the risk of developing eczema. On the other hand, Bacteroides fragilis and Streptococcus salivarius, which are known for their anti-inflammatory properties, were less abundant in infants with eczema. The observed differences in genera and species between cases and controls in this study may provide insight into the link between the microbiome and eczema risk.


Identification and evaluation of the novel immunodominant antigen Rv2351c from Mycobacterium tuberculosis.

  • Xuezhi Wang‎ et al.
  • Emerging microbes & infections‎
  • 2017‎

There is an urgent need for new immunodominant antigens to improve the diagnosis of tuberculosis (TB) and the efficacy of the TB vaccine to control the disease worldwide. In this study, we evaluated the diagnostic potential of a novel Mycobacterium tuberculosis (MTB)-specific antigen, Rv2351c, from region of difference (RD) 7 of the MTB genome, and investigated the potency of the vaccine by identifying its immunological function in human and animal immunological experiments. Twenty T-cell epitopes were identified using TEpredict and prediction tools from the Immune Epitope Database and Analysis Resource. A total of 159 subjects, including 61 patients with pulmonary TB, 38 patients with no TB and 55 healthy donors, were recruited and analyzed with an enzyme-linked immunospot (ELISpot) assay. The ELISpot assay using Rv2351c to detect TB infection, as compared with bacteriological tests as the gold standard, had a sensitivity and specificity of 61.4% (35/57) and 91.4% (85/93), respectively. The ELISpot assay using Rv2351c had a good conformance (κ=0.554) as compared with the bacteriological test. Rv2351c also elicited a potent cellular immune response with a high expression of cytokines (IFN-γ (4978±596.7 μg/mL) and IL-4 (68.3±15.5 μg/mL)) and a potent humoral immune response with a high concentration of IgG (1:2.2 × 106), IgG1 (1:4.5 × 105) and IgG2a (1:1.6 × 106) in immunized BALB/c mice. In addition, the ratio of IgG2a/IgG1 indicated that Rv2351c induced cellular immunity in the mice. The results of this study indicated that Rv2351c is an antigen with good immunogenicity that may potentially be used to develop diagnostic techniques and new TB vaccines.


A CRISPR-Cas12a-based specific enhancer for more sensitive detection of SARS-CoV-2 infection.

  • Weiren Huang‎ et al.
  • EBioMedicine‎
  • 2020‎

Real-time reverse transcription-PCR (rRT-PCR) has been the most effective and widely implemented diagnostic technology since the beginning of the COVID-19 pandemic. However, fuzzy rRT-PCR readouts with high Ct values are frequently encountered, resulting in uncertainty in diagnosis.


Autophagy-Related 2 Regulates Chlorophyll Degradation under Abiotic Stress Conditions in Arabidopsis.

  • Zhuanzhuan Jiang‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Chloroplasts are extraordinary organelles for photosynthesis and nutrient storage in plants. During leaf senescence or under stress conditions, damaged chloroplasts are degraded and provide nutrients for developing organs. Autophagy is a high-throughput degradation pathway for intracellular material turnover in eukaryotes. Along with chloroplast degradation, chlorophyll, an important component of the photosynthetic machine, is also degraded. However, the chlorophyll degradation pathways under high light intensity and high temperature stress are not well known. Here, we identified and characterized a novel Arabidopsis mutant, sl2 (seedling lethal 2), showing defective chloroplast development and accelerated chlorophyll degradation. Map-based cloning combined with high-throughput sequencing analysis revealed that a 118.6 kb deletion region was associated with the phenotype of the mutant. Complementary experiments confirmed that the loss of function of ATG2 was responsible for accelerating chlorophyll degradation in sl2 mutants. Furthermore, we analyzed chlorophyll degradation under abiotic stress conditions and found that both chloroplast vesiculation and autophagy take part in chlorophyll degradation under high light intensity and high temperature stress. These results enhanced our understanding of chlorophyll degradation under high light intensity and high temperature stress.


Increase rate of light-induced stomatal conductance is related to stomatal size in the genus Oryza.

  • Qiangqiang Zhang‎ et al.
  • Journal of experimental botany‎
  • 2019‎

The rapid response of stomatal conductance (gs) to fluctuating irradiance is of great importance to maximize carbon assimilation while minimizing water loss. Smaller stomata have been proven to have a faster response rate than larger ones, but most of these studies have been conducted with forest trees. In the present study, the effects of stomatal anatomy on the kinetics of gs and photosynthesis were investigated in 16 Oryza genotypes. Light-induced stomatal opening includes an initial time lag (λ) followed by an exponential increase. Smaller stomata had a larger maximum stomatal conductance increase rate (Slmax) during the exponential increase phase, but showed a longer time lag and a lower initial stomatal conductance (gs,initial) at low light. Stomatal size was, surprisingly, negatively correlated with the time required to reach 50% of maximum gs and photosynthesis (T50%gs and T50%A), which was shown to be positively correlated with λ and negatively correlated with gs,initial. With a lower gs,initial and a larger λ, small stomata showed a faster decrease of intercellular CO2 concentration (Ci) during the induction process, which may have led to a slower apparent Rubisco activation rate. Therefore, smaller stomata do not always benefit photosynthesis as reported before; the influence of stomatal size on dynamic photosynthesis is also correlated with λ and gs,initial.


TF-Marker: a comprehensive manually curated database for transcription factors and related markers in specific cell and tissue types in human.

  • Mingcong Xu‎ et al.
  • Nucleic acids research‎
  • 2022‎

Transcription factors (TFs) play key roles in biological processes and are usually used as cell markers. The emerging importance of TFs and related markers in identifying specific cell types in human diseases increases the need for a comprehensive collection of human TFs and related markers sets. Here, we developed the TF-Marker database (TF-Marker, http://bio.liclab.net/TF-Marker/), aiming to provide cell/tissue-specific TFs and related markers for human. By manually curating thousands of published literature, 5905 entries including information about TFs and related markers were classified into five types according to their functions: (i) TF: TFs which regulate expression of the markers; (ii) T Marker: markers which are regulated by the TF; (iii) I Marker: markers which influence the activity of TFs; (iv) TFMarker: TFs which play roles as markers and (v) TF Pmarker: TFs which play roles as potential markers. The 5905 entries of TF-Marker include 1316 TFs, 1092 T Markers, 473 I Markers, 1600 TFMarkers and 1424 TF Pmarkers, involving 383 cell types and 95 tissue types in human. TF-Marker further provides a user-friendly interface to browse, query and visualize the detailed information about TFs and related markers. We believe TF-Marker will become a valuable resource to understand the regulation patterns of different tissues and cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: