Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis.

  • Vijay Ramaswamy‎ et al.
  • Journal of clinical oncology : official journal of the American Society of Clinical Oncology‎
  • 2016‎

Posterior fossa ependymoma comprises two distinct molecular variants termed EPN_PFA and EPN_PFB that have a distinct biology and natural history. The therapeutic value of cytoreductive surgery and radiation therapy for posterior fossa ependymoma after accounting for molecular subgroup is not known.


Metabolic activation of mitochondria in glioma stem cells promotes cancer development through a reactive oxygen species-mediated mechanism.

  • Shuqiang Yuan‎ et al.
  • Stem cell research & therapy‎
  • 2015‎

Cancer stem cells (CSCs) possess characteristics associated with normal stem cells, specifically the abilities to renew themselves and to give rise to all cell types (differentiation). It is assumed that induction of differentiation in CSCs would reduce their ability to form tumors. What triggers CSC differentiation and the role of "differentiation" in tumorigenesis remain elusive.


DNA copy number analysis of Grade II-III and Grade IV gliomas reveals differences in molecular ontogeny including chromothripsis associated with IDH mutation status.

  • Adam Cohen‎ et al.
  • Acta neuropathologica communications‎
  • 2015‎

Isocitrate dehydrogenase (IDH) mutation status and grade define subgroups of diffuse gliomas differing based on age, tumor location, presentation, and prognosis. While some biologic differences between IDH mutated (IDH (mut)) and wild-type (IDH (wt)) gliomas are clear, the distinct alterations associated with progression of the two subtypes to glioblastoma (GBM, Grade IV) have not been well described. We analyzed copy number alterations (CNAs) across grades (Grade II-III and GBM) in both IDH (mut) and IDH (wt) infiltrating gliomas using molecular inversion probe arrays.


Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma.

  • Timothy F Cloughesy‎ et al.
  • Nature medicine‎
  • 2019‎

Glioblastoma is the most common primary malignant brain tumor in adults and is associated with poor survival. The Ivy Foundation Early Phase Clinical Trials Consortium conducted a randomized, multi-institution clinical trial to evaluate immune responses and survival following neoadjuvant and/or adjuvant therapy with pembrolizumab in 35 patients with recurrent, surgically resectable glioblastoma. Patients who were randomized to receive neoadjuvant pembrolizumab, with continued adjuvant therapy following surgery, had significantly extended overall survival compared to patients that were randomized to receive adjuvant, post-surgical programmed cell death protein 1 (PD-1) blockade alone. Neoadjuvant PD-1 blockade was associated with upregulation of T cell- and interferon-γ-related gene expression, but downregulation of cell-cycle-related gene expression within the tumor, which was not seen in patients that received adjuvant therapy alone. Focal induction of programmed death-ligand 1 in the tumor microenvironment, enhanced clonal expansion of T cells, decreased PD-1 expression on peripheral blood T cells and a decreasing monocytic population was observed more frequently in the neoadjuvant group than in patients treated only in the adjuvant setting. These findings suggest that the neoadjuvant administration of PD-1 blockade enhances both the local and systemic antitumor immune response and may represent a more efficacious approach to the treatment of this uniformly lethal brain tumor.


Systematic review of combinations of targeted or immunotherapy in advanced solid tumors.

  • Aaron C Tan‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2021‎

With rapid advances in our understanding of cancer, there is an expanding number of potential novel combination therapies, including novel-novel combinations. Identifying which combinations are appropriate and in which subpopulations are among the most difficult questions in medical research. We conducted a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-guided systematic review of trials of novel-novel combination therapies involving immunotherapies or molecular targeted therapies in advanced solid tumors. A MEDLINE search was conducted using a modified Cochrane Highly Sensitive Search Strategy for published clinical trials between July 1, 2017, and June 30, 2020, in the top-ranked medical and oncology journals. Trials were evaluated according to a criterion adapted from previously published Food and Drug Administration guidance and other key considerations in designing trials of combinations. This included the presence of a strong biological rationale, the use of a new established or emerging predictive biomarker prospectively incorporated into the clinical trial design, appropriate comparator arms of monotherapy or supportive external data sources and a primary endpoint demonstrating a clinically meaningful benefit. Of 32 identified trials, there were 11 (34%) trials of the novel-novel combination of anti-programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) therapy, and 10 (31%) trials of anti-PD-1/PD-L1 and anti-vascular endothelial growth factor (VEGF) combination therapy. 20 (62.5%) trials were phase II trials, while 12 (37.5%) were phase III trials. Most (72%) trials lacked significant preclinical evidence supporting the development of the combination in the given indication. A majority of trials (69%) were conducted in biomarker unselected populations or used pre-existing biomarkers within the given indication for patient selection. Most studies (66%) were considered to have appropriate comparator arms or had supportive external data sources such as prior studies of monotherapy. All studies were evaluated as selecting a clinically meaningful primary endpoint. In conclusion, designing trials to evaluate novel-novel combination therapies presents numerous challenges to demonstrate efficacy in a comprehensive manner. A greater understanding of biological rationale for combinations and incorporating predictive biomarkers may improve effective evaluation of combination therapies. Innovative statistical methods and increasing use of external data to support combination approaches are potential strategies that may improve the efficiency of trial design. Designing trials to evaluate novel-novel combination therapies presents numerous challenges to demonstrate efficacy in a comprehensive manner. A greater understanding of biological rationale for combinations and incorporating predictive biomarkers may improve effective evaluation of combination therapies. Innovative statistical methods and increasing use of external data to support combination approaches are potential strategies that may improve the efficiency of trial design.


Caregiver burden by treatment and clinical characteristics of patients with glioblastoma.

  • Trang H Au‎ et al.
  • Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer‎
  • 2022‎

Glioblastoma is an incurable disease with a poor prognosis. For caregivers of people with glioblastoma, the burden of care can be high. Patients often present with different clinical characteristics, which may impact caregiver burden in different ways. This study aimed to evaluate associations between patient clinical characteristics and caregiver burden/quality of life (QoL).


Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma.

  • Krishna P L Bhat‎ et al.
  • Cancer cell‎
  • 2013‎

Despite extensive study, few therapeutic targets have been identified for glioblastoma (GBM). Here we show that patient-derived glioma sphere cultures (GSCs) that resemble either the proneural (PN) or mesenchymal (MES) transcriptomal subtypes differ significantly in their biological characteristics. Moreover, we found that a subset of the PN GSCs undergoes differentiation to a MES state in a TNF-α/NF-κB-dependent manner with an associated enrichment of CD44 subpopulations and radioresistant phenotypes. We present data to suggest that the tumor microenvironment cell types such as macrophages/microglia may play an integral role in this process. We further show that the MES signature, CD44 expression, and NF-κB activation correlate with poor radiation response and shorter survival in patients with GBM.


FoxM1 promotes β-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis.

  • Nu Zhang‎ et al.
  • Cancer cell‎
  • 2011‎

Wnt/β-catenin signaling is essential for stem cell regulation and tumorigenesis, but its molecular mechanisms are not fully understood. Here, we report that FoxM1 is a downstream component of Wnt signaling and is critical for β-catenin transcriptional function in tumor cells. Wnt3a increases the level and nuclear translocation of FoxM1, which binds directly to β-catenin and enhances β-catenin nuclear localization and transcriptional activity. Genetic deletion of FoxM1 in immortalized neural stem cells abolishes β-catenin nuclear localization. FoxM1 mutations that disrupt the FoxM1-β-catenin interaction or FoxM1 nuclear import prevent β-catenin nuclear accumulation in tumor cells. FoxM1-β-catenin interaction controls Wnt target gene expression, is required for glioma formation, and represents a mechanism for canonical Wnt signaling during tumorigenesis.


Tie2/TEK modulates the interaction of glioma and brain tumor stem cells with endothelial cells and promotes an invasive phenotype.

  • Dan Liu‎ et al.
  • Oncotarget‎
  • 2010‎

Malignant gliomas are the prototype of highly infiltrative tumors and this characteristic is the main factor for the inevitable tumor recurrence and short survival after most aggressive therapies. The aberrant communication between glioma cells and tumor microenvironment represents one of the major factors regulating brain tumor dispersal. Our group has previously reported that the tyrosine kinase receptor Tie2/TEK is expressed in glioma cells and brain tumor stem cells and is associated with the malignant progression of these tumors. In this study, we sought to determine whether the angiopoietin 1 (Ang1)/Tie2 axis regulates crosstalk between glioma cells and endothelial cells. We found that Ang1 enhanced the adhesion of Tie2-expressing glioma and brain tumor stem cells to endothelial cells. Conversely, specific small interfering RNA (siRNA) knockdown of Tie2 expression inhibited the adhesion capability of glioma cells. Tie2 activation induced integrin β1 and N-cadherin upregulation, and neutralizing antibodies against these molecules inhibited the adhesion of Tie2-positive glioma cells to endothelial cells. In 2D and 3D cultures, we observed that Ang1/Tie2 axis activation was related to increased glioma cell invasion, which was inhibited by using Tie2 siRNA. Importantly, intracranial co-implantation of Tie2-positive glioma cells and endothelial cells in a mouse model resulted in diffusely invasive tumors with cell clusters surrounding glomeruloid vessels mimicking a tumoral niche distribution. Collectively, our results provide new information about the Tie2 signaling in glioma cells that regulates the cross-talk between glioma cells and tumor microenvironment, envisioning Tie2 as a multi-compartmental target for glioma therapy.


IGFBP2 expression predicts IDH-mutant glioma patient survival.

  • Lin Eric Huang‎ et al.
  • Oncotarget‎
  • 2017‎

Mutations of the isocitrate dehydrogenase (IDH) 1 and 2 genes occur in ~80% of lower-grade (WHO grade II and grade III) gliomas. Mutant IDH produces (R)-2-hydroxyglutarate, which induces DNA hypermethylation and presumably drives tumorigenesis. Interestingly, IDH mutations are associated with improved survival in glioma patients, but the underlying mechanism for the difference in survival remains unclear. Through comparative analyses of 286 cases of IDH-wildtype and IDH-mutant lower-grade glioma from a TCGA data set, we report that IDH-mutant gliomas have increased expression of tumor-suppressor genes (NF1, PTEN, and PIK3R1) and decreased expression of oncogenes(AKT2, ARAF, ERBB2, FGFR3, and PDGFRB) and glioma progression genes (FOXM1, IGFBP2, and WWTR1) compared with IDH-wildtype gliomas. Furthermore, each of these genes is prognostic in overall gliomas; however, within the IDH-mutant group, none remains prognostic except IGFBP2 (encodinginsulin-like growth factor binding protein 2). Through validation in an independent cohort, we show that patients with low IGFBP2 expressiondisplay a clear advantage in overall and disease-free survival, whereas those with high IGFBP2 expressionhave worse median survival than IDH-wildtype patients. These observations hold true across different histological and molecular subtypes of lower-grade glioma. We propose therefore that an unexpected biological consequence of IDH mutations in glioma is to ameliorate patient survival by promoting tumor-suppressor signaling while inhibiting that of oncogenes, particularly IGFBP2.


Replicative Instability Drives Cancer Progression.

  • Benjamin B Morris‎ et al.
  • Biomolecules‎
  • 2022‎

In the past decade, defective DNA repair has been increasingly linked with cancer progression. Human tumors with markers of defective DNA repair and increased replication stress exhibit genomic instability and poor survival rates across tumor types. Seminal studies have demonstrated that genomic instability develops following inactivation of BRCA1, BRCA2, or BRCA-related genes. However, it is recognized that many tumors exhibit genomic instability but lack BRCA inactivation. We sought to identify a pan-cancer mechanism that underpins genomic instability and cancer progression in BRCA-wildtype tumors. Methods: Using multi-omics data from two independent consortia, we analyzed data from dozens of tumor types to identify patient cohorts characterized by poor outcomes, genomic instability, and wildtype BRCA genes. We developed several novel metrics to identify the genetic underpinnings of genomic instability in tumors with wildtype BRCA. Associated clinical data was mined to analyze patient responses to standard of care therapies and potential differences in metastatic dissemination. Results: Systematic analysis of the DNA repair landscape revealed that defective single-strand break repair, translesion synthesis, and non-homologous end-joining effectors drive genomic instability in tumors with wildtype BRCA and BRCA-related genes. Importantly, we find that loss of these effectors promotes replication stress, therapy resistance, and increased primary carcinoma to brain metastasis. Conclusions: Our results have defined a new pan-cancer class of tumors characterized by replicative instability (RIN). RIN is defined by the accumulation of intra-chromosomal, gene-level gain and loss events at replication stress sensitive (RSS) genome sites. We find that RIN accelerates cancer progression by driving copy number alterations and transcriptional program rewiring that promote tumor evolution. Clinically, we find that RIN drives therapy resistance and distant metastases across multiple tumor types.


Intermittent induction of HIF-1α produces lasting effects on malignant progression independent of its continued expression.

  • Hyunsung Choi‎ et al.
  • PloS one‎
  • 2015‎

Dysregulation of hypoxia-inducible transcription factors HIF-1α and HIF-2α correlates with poor prognosis in human cancers; yet, divergent and sometimes opposing activities of these factors in cancer biology have been observed. Adding to this complexity is that HIF-1α apparently possesses tumor-suppressing activities, as indicated by the loss-of-function mutations or even homozygous deletion of HIF1A in certain human cancers. As a step towards understanding this complexity, we employed 8-week intermittent induction of a stable HIF-1α variant, HIF1α(PP), in various cancer cell lines and examined the effects on malignant progression in xenografts of immunocompromised mice in comparison to those of HIF2α(PP). Although 8-week treatment led to eventual loss of HIF1α(PP) expression, treated osteosarcoma U-2 OS cells acquired tumorigenicity in the subcutaneous tissue. Furthermore, the prior treatment resulted in widespread invasion of malignant glioma U-87 MG cells in the mouse brain and sustained growth of U-118 MG glioma cells. The lasting effects of HIF-1α on malignant progression are specific because neither HIF2α(PP) nor β-galactosidase yielded similar effects. By contrast, transient expression of HIF1α(PP) in U-87 MG cells or constitutive expression of HIF1α(PP) but not HIF2α(PP) in a patient-derived glioma sphere culture inhibited tumor growth and spread. Our results indicate that intermittent induction of HIF-1α produces lasting effects on malignant progression even at its own expense.


The transcriptional network for mesenchymal transformation of brain tumours.

  • Maria Stella Carro‎ et al.
  • Nature‎
  • 2010‎

The inference of transcriptional networks that regulate transitions into physiological or pathological cellular states remains a central challenge in systems biology. A mesenchymal phenotype is the hallmark of tumour aggressiveness in human malignant glioma, but the regulatory programs responsible for implementing the associated molecular signature are largely unknown. Here we show that reverse-engineering and an unbiased interrogation of a glioma-specific regulatory network reveal the transcriptional module that activates expression of mesenchymal genes in malignant glioma. Two transcription factors (C/EBPbeta and STAT3) emerge as synergistic initiators and master regulators of mesenchymal transformation. Ectopic co-expression of C/EBPbeta and STAT3 reprograms neural stem cells along the aberrant mesenchymal lineage, whereas elimination of the two factors in glioma cells leads to collapse of the mesenchymal signature and reduces tumour aggressiveness. In human glioma, expression of C/EBPbeta and STAT3 correlates with mesenchymal differentiation and predicts poor clinical outcome. These results show that the activation of a small regulatory module is necessary and sufficient to initiate and maintain an aberrant phenotypic state in cancer cells.


Loss of the endocytic tumor suppressor HD-PTP phenocopies LKB1 and promotes RAS-driven oncogenesis.

  • Chang-Soo Seong‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Oncogenic RAS mutations drive aggressive cancers that are difficult to treat in the clinic, and while direct inhibition of the most common KRAS variant in lung adenocarcinoma (G12C) is undergoing clinical evaluation, a wide spectrum of oncogenic RAS variants together make up a large percentage of untargetable lung and GI cancers. Here we report that loss-of-function alterations (mutations and deep deletions) in the gene that encodes HD-PTP ( PTPN23 ) occur in up to 14% of lung cancers in the ORIEN Avatar lung cancer cohort, associate with adenosquamous histology, and occur alongside an altered spectrum of KRAS alleles. Furthermore, we show that in publicly available early-stage NSCLC studies loss of HD-PTP is mutually exclusive with loss of LKB1, which suggests they restrict a common oncogenic pathway in early lung tumorigenesis. In support of this, knockdown of HD-PTP in RAS-transformed lung cancer cells is sufficient to promote FAK-dependent invasion. Lastly, knockdown of the Drosophila homolog of HD-PTP (dHD-PTP/Myopic) synergizes to promote RAS-dependent neoplastic progression. Our findings highlight a novel tumor suppressor that can restrict RAS-driven lung cancer oncogenesis and identify a targetable pathway for personalized therapeutic approaches for adenosquamous lung cancer.


Aberrant mesenchymal differentiation of glioma stem-like cells: implications for therapeutic targeting.

  • Veerakumar Balasubramaniyan‎ et al.
  • Oncotarget‎
  • 2015‎

Differentiation has been proposed as a therapeutic strategy for glioblastoma (GBM) in part due to observations of stem-like cells in GBM that have been shown to undergo terminal differentiation in response to growth factor withdrawal and BMP activation. However, the effects of long term exposure to serum culture conditions on glioma sphere cultures/glioma stem-like cells (GSCs) have not been examined. Here we show that GSCs retained both neurosphere formation and tumor initiation abilities after short or long term serum exposure. Under these conditions, GSCs expressed both neural lineage and stem cell markers, highlighting the aberrant pseudo-differentiation state. GSCs maintained under adherent serum cultured conditions continued to proliferate and initiate tumor formation with efficiencies similar to GSCs maintained under proliferating (neurosphere) conditions. Proneural (PN) GSCs under serum exposure showed an induction of mesenchymal (MES) gene expression signatures. Our data indicate that exposure to serum containing media result in aberrant differentiation (e.g. toward MES lineage) and activation of alternative oncogenic pathways in GSCs.


Impact of the COVID-19 pandemic on rural and urban cancer patients' experiences, health behaviors, and perceptions.

  • Anita R Peoples‎ et al.
  • The Journal of rural health : official journal of the American Rural Health Association and the National Rural Health Care Association‎
  • 2022‎

The COVID-19 pandemic has disrupted many facets of life. We evaluated pandemic-related health care experiences, COVID-19 prevention behaviors and measures, health behaviors, and psychosocial outcomes among rural and urban cancer patients.


Oncolytic DNX-2401 virotherapy plus pembrolizumab in recurrent glioblastoma: a phase 1/2 trial.

  • Farshad Nassiri‎ et al.
  • Nature medicine‎
  • 2023‎

Immune-mediated anti-tumoral responses, elicited by oncolytic viruses and augmented with checkpoint inhibition, may be an effective treatment approach for glioblastoma. Here in this multicenter phase 1/2 study we evaluated the combination of intratumoral delivery of oncolytic virus DNX-2401 followed by intravenous anti-PD-1 antibody pembrolizumab in recurrent glioblastoma, first in a dose-escalation and then in a dose-expansion phase, in 49 patients. The primary endpoints were overall safety and objective response rate. The primary safety endpoint was met, whereas the primary efficacy endpoint was not met. There were no dose-limiting toxicities, and full dose combined treatment was well tolerated. The objective response rate was 10.4% (90% confidence interval (CI) 4.2-20.7%), which was not statistically greater than the prespecified control rate of 5%. The secondary endpoint of overall survival at 12 months was 52.7% (95% CI 40.1-69.2%), which was statistically greater than the prespecified control rate of 20%. Median overall survival was 12.5 months (10.7-13.5 months). Objective responses led to longer survival (hazard ratio 0.20, 95% CI 0.05-0.87). A total of 56.2% (95% CI 41.1-70.5%) of patients had a clinical benefit defined as stable disease or better. Three patients completed treatment with durable responses and remain alive at 45, 48 and 60 months. Exploratory mutational, gene-expression and immunophenotypic analyses revealed that the balance between immune cell infiltration and expression of checkpoint inhibitors may potentially inform on response to treatment and mechanisms of resistance. Overall, the combination of intratumoral DNX-2401 followed by pembrolizumab was safe with notable survival benefit in select patients (ClinicalTrials.gov registration: NCT02798406).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: