Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 69 papers

Low second to fourth digit ratio in Dupuytren disease.

  • Takuya Yokoi‎ et al.
  • Medicine‎
  • 2017‎

The ratio of the lengths of the second and fourth digits (2D:4D) has been described as reflecting endogenous prenatal androgen exposure. In general, 2D:4D is lower in men than in women and has potential as a biomarker or predictor for various diseases, athletic ability, and academic performance. Dupuytren disease has digital flexion contractures and is known to predominate in men, but the pathogenesis of the disease remains unclear. To clarify the relationships between Dupuytren disease and endogenous androgens, we performed a retrospective analysis of hand radiographs to investigate 2D:4D in Dupuytren disease. The study included male patients with Dupuytren disease (n = 22) and a control group (n = 18) of male patients with carpal tunnel syndrome. Only unaffected hands, without contractures or osteoarthritis, were evaluated for the purpose of radiographic assessment. The lengths of the phalanx and metacarpal bones in the second and fourth digits were measured by 2 independent observers who each performed 2 sets of measurements separated by a minimum 1-week interval. The 2D:4D was calculated separately for the phalanges and metacarpals, and a combined (phalanx + metacarpal) 2D:4D was also calculated. The reliability of the observer measurements was established using the intraclass correlation coefficient, and both the intra- and interobserver reliability showed excellent agreement. We found that compared with control group, the Dupuytren disease group had significantly lower phalanx and combined 2D:4D. These findings suggest that endogenous prenatal androgens could contribute to the development of Dupuytren disease, leading to its characteristic clinical presentation predominantly in men and affecting the ulnar rays.


Presence of sarcopenia does not affect the clinical results of balloon kyphoplasty for acute osteoporotic vertebral fracture.

  • Shoichiro Ohyama‎ et al.
  • Scientific reports‎
  • 2021‎

Sarcopenia has been associated with poor clinical outcomes in several diseases. Herein, the clinical results of balloon kyphoplasty (BKP) for acute osteoporotic vertebral fracture (OVF) treatment were assessed and compared between sarcopenia and non-sarcopenia patients. Sixty patients who underwent BKP for treatment of acute OVF with poor prognostic factors between April 2016 and September 2017 and were assessed for sarcopenia were enrolled. Clinical results (back pain on visual analogue scale [VAS]; short-form [SF] 36; vertebral deformity; activities of daily living levels; and incidence of adjacent vertebral fractures) were compared between the two groups at 6 months post-BKP. Data analysis revealed that back pain on VAS, SF-36 scores, and vertebral deformity improved from baseline to 6 months after BKP. Thirty-nine patients (65.0%) were diagnosed with sarcopenia and demonstrated a lower body mass index (21.2 vs. 23.3 kg/m2, p = 0.02), skeletal muscle mass index (5.32 vs. 6.55 kg/m2, p < 0.01), hand-grip strength (14.7 vs. 19.2 kg, p = 0.01), and bone mineral density of the femoral neck (0.57 vs. 0.76 g/cm2, p < 0.01) than those of patients without sarcopenia. However, no significant differences were observed in the clinical results between these groups. Therefore, BKP's clinical results for the treatment of acute OVF are not associated with sarcopenia.


Review of the referral documents of patients with malignant soft tissue tumors.

  • Manabu Hoshi‎ et al.
  • Scientific reports‎
  • 2022‎

Fifteen years have passed since the soft tissue tumor practice guidelines were first published in Japan. Tumor size of ≥ 5 cm and tumor depth were key findings suggestive of malignant soft tissue tumors. We reviewed the referral documents provided by the referring physicians to see if these two findings were reported. The study was conducted from January 2007 to December 2021 and included 142 patients (83 men and 59 women; median age, 64 [6-94] years) with malignant soft tissue tumors. Patient referral documents from physicians were screened for descriptions of the tumor size and depth. The tumor size, depth, and both were described in 51.4%, 36.6%, and 23.2% of the referrals, respectively. Both findings were mentioned in 23.8%, 21.7%, and 25.0% of referrals in 2007-2011, 2012-2016, and 2017-2021, respectively. Of orthopedic surgeons and other physicians, 61.2% and 38.6%, respectively, described the tumor size. Whether the general physicians could follow the soft tissue tumor practice guidelines was difficult to conclude by reviewing patient referral documents. However, orthopedic surgeons seemed to pay more attention to tumor size. Awareness regarding soft tissue tumor practice guidelines should be increased to help diagnose malignant soft tissue tumors early.


Topical co-administration of zoledronate with recombinant human bone morphogenetic protein-2 can induce and maintain bone formation in the bone marrow environment.

  • Hideki Ueyama‎ et al.
  • BMC musculoskeletal disorders‎
  • 2021‎

Bone morphogenetic proteins (BMPs) induce osteogenesis in various environments. However, when BMPs are used alone in the bone marrow environment, the maintenance of new bone formation is difficult owing to vigorous bone resorption. This is because BMPs stimulate the differentiation of not only osteoblast precursor cells but also osteoclast precursor cells. The present study aimed to induce and maintain new bone formation using the topical co-administration of recombinant human BMP-2 (rh-BMP-2) and zoledronate (ZOL) on beta-tricalcium phosphate (β-TCP) composite.


Reduced dynamic loads due to hip dislocation induce acetabular cartilage degeneration by IL-6 and MMP3 via the STAT3/periostin/NF-κB axis.

  • Yutaka Nakamura‎ et al.
  • Scientific reports‎
  • 2022‎

Developmental dysplasia of the hip (DDH) is characterized by anatomical abnormalities of the hip joint, ranging from mild acetabular dysplasia to hip subluxation and eventually dislocation. The mechanism underlying the cartilage degeneration of the hip joints exposed to reduced dynamic loads due to hip dislocation remains unknown. We established a rodent hip dislocation (disarticulation; DA) model of DDH (DA-DDH rats and mice) by swaddling. Expression levels of periostin (Postn) and catabolic factors, such as interleukin-6 (IL-6) and matrix metalloproteinase 3 (Mmp3), increased and those of chondrogenic markers decreased in the acetabular cartilage of the DA-DDH models. Postn induced IL-6 and Mmp3 expression in chondrocytes through integrin αVβ3, focal adhesion kinase, Src, and nuclear factor-κB (NF-κB) signaling. The microgravity environment created by a random positioning machine induced Postn expression in chondrocytes through signal transducer and activator of transcription 3 (STAT3) signaling. IL-6 stimulated Postn expression via STAT3 signaling. Furthermore, cartilage degeneration was suppressed in the acetabulum of Postn-/- DA-DDH mice compared with that in the acetabulum of wild type DA-DDH mice. In summary, reduced dynamic loads due to hip dislocation induced acetabular cartilage degeneration via IL-6 and MMP3 through STAT3/periostin/NF-κB signaling in the rodent DA-DDH models.


Identification of Nedd9 as a TGF-β-Smad2/3 Target Gene Involved in RANKL-Induced Osteoclastogenesis by Comprehensive Analysis.

  • Yasunori Omata‎ et al.
  • PloS one‎
  • 2016‎

TGF-ß is a multifunctional cytokine that is involved in cell proliferation, differentiation and function. We previously reported an essential role of the TGF-ß -Smad2/3 pathways in RANKL-induced osteoclastogenesis. Using chromatin immunoprecipitation followed by sequencing, we comprehensively identified Smad2/3 target genes in bone marrow macrophages. These genes were enriched in the gene population upregulated by TGF-ß and downregulated by RANKL. Recent studies have revealed that histone modifications, such as trimethylation of histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3), critically regulate key developmental steps. We identified Nedd9 as a Smad2/3 target gene whose histone modification pattern was converted from H3K4me3(+)/H3K4me27(+) to H3K4me3(+)/H3K4me27(-) by TGF-ß. Nedd9 expression was increased by TGF-ß and suppressed by RANKL. Overexpression of Nedd9 partially rescued an inhibitory effect of a TGF-ß inhibitor, while gene silencing of Nedd9 suppressed RANKL-induced osteoclastogenesis. RANKL-induced osteoclastogenesis were reduced and stimulatory effects of TGF-ß on RANKL-induced osteoclastogenesis were partially abrogated in cells from Nedd9-deficient mice although knockout mice did not show abnormal skeletal phenotypes. These results suggest that Nedd9 is a Smad2/3 target gene implicated in RANKL-induced osteoclastogenesis.


Identification of cell cycle-arrested quiescent osteoclast precursors in vivo.

  • Toshihide Mizoguchi‎ et al.
  • The Journal of cell biology‎
  • 2009‎

Osteoclasts are multinucleated cells that resorb bone. Although osteoclasts originate from the monocyte/macrophage lineage, osteoclast precursors are not well characterized in vivo. The relationship between proliferation and differentiation of osteoclast precursors is examined in this study using murine macrophage cultures treated with macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-kappaB (RANK) ligand (RANKL). Cell cycle-arrested quiescent osteoclast precursors (QuOPs) were identified as the committed osteoclast precursors in vitro. In vivo experiments show that QuOPs survive for several weeks and differentiate into osteoclasts in response to M-CSF and RANKL. Administration of 5-fluorouracil to mice induces myelosuppression, but QuOPs survive and differentiate into osteoclasts in response to an active vitamin D(3) analogue given to those mice. Mononuclear cells expressing c-Fms and RANK but not Ki67 are detected along bone surfaces in the vicinity of osteoblasts in RANKL-deficient mice. These results suggest that QuOPs preexist at the site of osteoclastogenesis and that osteoblasts are important for maintenance of QuOPs.


The effects of resistance training on bone mineral density and bone quality in type 2 diabetic rats.

  • Aoi Ikedo‎ et al.
  • Physiological reports‎
  • 2019‎

Resistance training (RT) has been known to be effective in maintaining and improving bone strength, which is based on bone mineral density (BMD) and bone quality. However, it is not clear whether RT is effective in improving bone strength in patients with type-2 diabetes mellitus (T2DM), who have a high risk of fracture. Therefore, we tested the effects of a 6-week RT regimen using percutaneous electrical stimulation in T2DM model rats, male Otsuka Long-Evans Tokushima Fatty (OLETF), and its control, Long-Evans Tokushima Otsuka (LETO). After 6 weeks of RT, tibial BMD in RT legs was significantly higher than that in control (CON) legs in both groups. In diaphyseal cortical bone, bone area/tissue area, and cortical thickness was significantly increased in RT legs compared with CON legs in both groups. Cortical porosity was highly observed in OLETF compared with LETO, but RT improved cortical porosity in both groups. Interestingly, trabecular number, trabecular thickness and trabecular space as well as BMD and bone volume/tissue volume in proximal tibial metaphyseal trabecular bone were significantly improved in RT legs compared with CON legs in both groups. In contrast, connectivity density and structural model index were not affected by RT. These results indicate that the 6-week RT regimen effectively increased BMD and improved bone quality in T2DM model rats as well as control rats. Therefore, RT may have the potential to improve bone strength and reduce fracture risk, even in patients with T2DM.


Intra-Articular Injection of Stromal Cell-Derived Factor 1α Promotes Meniscal Healing via Macrophage and Mesenchymal Stem Cell Accumulation in a Rat Meniscal Defect Model.

  • Yohei Nishida‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

The stromal-cell-derived factor-1α (SDF-1) is well-known for playing important roles in the regeneration of tissue by enhancing cell migration. However, the effect of SDF-1 in meniscal healing remains unknown. The purpose of this study is to investigate the effects of intra-articular injection of SDF-1 on meniscus healing in a rat meniscal defect model. The intra-articular SDF-1 injection was performed at meniscectomy and one week later. Macroscopic and histological assessments of the reparative meniscus were conducted at one, two and six weeks after meniscectomy in rats. In the macroscopic evaluation, the SDF-1 group showed an increase in the size of the reparative meniscus at six weeks after meniscectomy compared to the phosphate-buffered saline (PBS) injection (no-treatment) group. Histological findings showed that intra-articular injection of SDF-1 enhanced the migration of macrophages to the site of the regenerative meniscus at one and two weeks after meniscectomy. CD68- and CD163-positive cells in the SDF-1 group at one week after meniscectomy were significantly higher than in the no-treatment group. CD163-positive cells in the SDF-1 group at two weeks were significantly higher than in the no-treatment group. At one week after meniscectomy, there were cells expressing mesenchymal-stem-cell-related markers in the SDF-1 group. These results indicate the potential of regenerative healing of the meniscus by SDF-1 injection via macrophage and mesenchymal stem cell accumulation. In the present study, intra-articular administration of SDF-1 contributed to meniscal healing via macrophage, CD90-positive cell and CD105-positive cell accumulation in a rat meniscal defect model. The SDF-1-CXCR4 pathway plays an important role in the meniscal healing process. For potential clinical translation, SDF-1 injection therapy seems to be a promising approach for the biological augmentation in meniscal injury areas to enhance healing capacity.


Local transplantation of adipose-derived stem cells has a significant therapeutic effect in a mouse model of rheumatoid arthritis.

  • Hideki Ueyama‎ et al.
  • Scientific reports‎
  • 2020‎

Adipose-derived stem cells (ADSCs) have anti-inflammatory and regenerative properties. The purpose of this study was to investigate the effect of locally administered ADSCs in a rheumatoid arthritis (RA) mouse model. In an in vivo experiment, single-cell ADSCs and three dimensionally-cultured ADSC spheroids were injected intra-articularly into the knees of RA model mice and histologically assessed. Marked improvement of synovial inflammation and articular cartilage regeneration was found in ADSC-treated mice. Proliferation, migration, and apoptosis assays of synovial fibroblasts incubated with single-cell and spheroid ADSCs were performed. The expression levels of total cytokine RNA in ADSC single cells, spheroids, and ADSC-treated inflammatory synovial fibroblasts were also evaluated by quantitative reverse transcription PCR. ADSCs suppressed the proliferation and migration of activated inflammatory cells and downregulated inflammatory cytokines. TSG-6 and TGFβ1 were significantly upregulated in ADSCs compared to controls and TGFβ1 was significantly upregulated in ADSC spheroids compared to single cells. The apoptosis rate of ADSC spheroids was significantly lower than that of single-cell ADSCs. These results indicated that intra-articular administration of ADSC single cells and spheroids was effective in an RA mouse model, offering a novel approach for the development of effective localized treatments for patients with RA.


3D-cultured small size adipose-derived stem cell spheroids promote bone regeneration in the critical-sized bone defect rat model.

  • Yutaro Yamada‎ et al.
  • Biochemical and biophysical research communications‎
  • 2022‎

Adipose-derived stem cells (ADSCs), due to their regenerative ability, have beneficial effects on bone and cartilage defects. In addition, spheroid formation of ADSCs obtained using three-dimensional (3D) culture accelerates the regenerative ability of ADSCs. The study investigated the regenerative effect of 3D-cultured small size ADSC spheroids without a scaffold in rats with defects in the critical-sized calvarial bone. ADSC-single cells, ADSC-spheroids, or PBS (as control) were implanted in rats, and radiological and histological assessment of bone regeneration was performed. Bone defects were significantly regenerated in the ADSC-spheroid group compared to that in the control group. ADSC-spheroids also showed the most significant bone regeneration in histological assessment. Immunohistochemistry assessment showed that ADSC-spheroids could survive 12 weeks after cell implantation. In vitro, cell apoptosis in ADSC-spheroids was significantly suppressed compared to that in ADSC-single cells. In addition, gene expression related to bone morphogenesis, angiogenesis, and stemness in ADSC-spheroids was elevated. The scaffold-free 3D-cultured small ADSC-spheroids survived in in vitro and in vivo conditions and promoted bone regeneration. Therefore, injectable small size ADSC-spheroids are a novel and less-invasive therapeutic option for treating bone defects.


Induction of chondrogenesis with a RANKL-binding peptide, WP9QY, in vitro and in vivo in a rabbit model.

  • Yuriko Furuya‎ et al.
  • Biochemical and biophysical research communications‎
  • 2022‎

WP9QY (W9) is a receptor activator of nuclear factor-κB ligand (RANKL)-binding peptide that inhibits osteoclastogenesis by blunting the RANKL-RANK interaction, and also increases osteoblastogenesis via RANKL reverse signaling. W9 has dual effects on osteoclasts and osteoblasts; however, it is unknown whether the peptide has an effect on chondrocytes. Here, we report that W9 induces proliferation and differentiation of chondrocytes in vitro and repairs full-thickness articular cartilage defects in vivo. W9 stimulated chondrocyte differentiation in a two-dimensional (2D) culture of human mesenchymal stem cells (hMSCs), and transforming growth factor β3 (TGF-β3) showed synergistic effects with W9 on chondrogenesis. W9 enlarged the size of 3D pellet cultures of hMSCs and produced chondrocyte-specific matrices, especially in combined treatment with TGF-β3. The peptide also stimulated proliferation of hMSCs with induction of expression of chondrogenesis-related genes. Several RANKL inhibitors had no effect on chondrocytic differentiation. RANKL-knockdown experiments showed that W9 did not induce chondrogenesis through RANKL, but did induce osteoblastogenesis through RANKL. Intraarticular injection of W9 resulted in significant repair of full-thickness articular cartilage defects in rabbits. Taken together, these results suggest that W9 ameliorates the articular cartilage defects by increasing the volume of cartilaginous matrices with accompanying induction of proliferation and differentiation of chondrocytes via mechanisms independent of RANKL inhibition and RANKL reverse signaling. Since no pharmaceuticals are clinically available for treatment of cartilage damage such as osteoarthritis, our findings demonstrate the potential of W9 to address the unmet medical needs.


Evaluation of FGFR inhibitor ASP5878 as a drug candidate for achondroplasia.

  • Tomonori Ozaki‎ et al.
  • Scientific reports‎
  • 2020‎

Achondroplasia is caused by gain-of-function mutations in FGFR3 gene and leads to short-limb dwarfism. A stabilized analogue of C-type natriuretic peptide (CNP) is known to elongate bone by interacting with FGFR3 signals and thus is a promising drug candidate. However, it needs daily administration by percutaneous injection. FGFR inhibitor compounds are other drug candidates for achondroplasia because they directly fix the mutant protein malfunction. Although FGFR inhibitors elongate the bone of model mice, their adverse effects are not well studied. In this study, we found that a new FGFR inhibitor, ASP5878, which was originally developed as an anti-cancer drug, elongated the bone of achondroplasia model male mice at the dose of 300 μg/kg, which confers an AUC of 275 ng·h/ml in juvenile mice. Although ASP5878 was less effective in bone elongation than a CNP analogue, it is advantageous in that ASP5878 can be administered orally. The AUC at which minimal adverse effects were observed (very slight atrophy of the corneal epithelium) was 459 ng·h/ml in juvenile rats. The positive discrepancy between AUCs that brought efficacy and minimal adverse effect suggests the applicability of ASP5878 to achondroplasia in the clinical setting. We also analyzed effects of ASP5878 in a patient-specific induced pluripotent stem cell (iPSC) model for achondroplasia and found the effects on patient chondrocyte equivalents. Nevertheless, cautious consideration is needed when referring to safety data obtained from its application to adult patients with cancer in clinical tests.


Postoperative Physical Therapy Program Focused on Low Back Pain Can Improve Treatment Satisfaction after Minimally Invasive Lumbar Decompression.

  • Hidetomi Terai‎ et al.
  • Journal of clinical medicine‎
  • 2022‎

Patient satisfaction is crucial in pay-for-performance initiatives. To achieve further improvement in satisfaction, modifiable factors should be identified according to the surgery type. Using a prospective cohort, we compared the overall treatment satisfaction after microendoscopic lumbar decompression between patients treated postoperatively with a conventional physical therapy (PT) program (control; n = 100) and those treated with a PT program focused on low back pain (LBP) improvement (test; n = 100). Both programs included 40 min outpatient sessions, once per week for 3 months postoperatively. Adequate compliance was achieved in 92 and 84 patients in the control and test cohorts, respectively. There were no significant differences in background factors; however, the patient-reported pain score at 3 months postoperatively was significantly better, and treatment satisfaction was significantly higher in the test than in the control cohort (-0.02 ± 0.02 vs. -0.03 ± 0.03, p = 0.029; 70.2% vs. 55.4%, p = 0.045, respectively). In the multivariate logistic regression analysis, patients treated with the LBP program tended to be more satisfied than those treated with the conventional program, independent of age, sex, and diagnosis (adjusted odds ratio = 2.34, p = 0.012). Postoperative management with the LBP program could reduce pain more effectively and aid spine surgeons in achieving higher overall satisfaction after minimally invasive lumbar decompression, without additional pharmacological therapy.


Delirium Risk Score in Elderly Patients with Cervical Spinal Cord Injury and/or Cervical Fracture.

  • Koji Tamai‎ et al.
  • Journal of clinical medicine‎
  • 2023‎

The number of elderly patients with cervical trauma is increasing. Such patients are considered to be at high risk for delirium, which is an acute neuropsychological disorder that reduces the patient's capacity to interact with their environment due to impairments in cognition. This study aimed to establish a risk score that predicts delirium in elderly patients with cervical SCI and/or cervical fracture regardless of treatment type. This retrospective cohort study included 1512 patients aged ≥65 years with cervical SCI and/or cervical fracture. The risk factors for delirium according to treatment type (surgical or conservative) were calculated using multivariate logistic regression. A delirium risk score was established as the simple arithmetic sum of points assigned to variables that were significant in the multivariate analyses. Based on the statistical results, the delirium risk score was defined using six factors: old age (≥80 years), hypoalbuminemia, cervical fracture, major organ injury, dependence on pre-injury mobility, and comorbid diabetes. The score's area under the curve for the prediction of delirium was 0.66 (p < 0.001). Although the current scoring system must be validated with an independent dataset, the system remains beneficial because it can be used after screening examinations upon hospitalization and before deciding the treatment strategy.


DNA maintenance methylation enzyme Dnmt1 in satellite cells is essential for muscle regeneration.

  • Hiroyuki Iio‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Epigenetic transcriptional regulation is essential for the differentiation of various types of cells, including skeletal muscle cells. DNA methyltransferase 1 (Dnmt1) is responsible for maintenance of DNA methylation patterns via cell division. Here, we investigated the relationship between Dnmt1 and skeletal muscle regeneration. We found that Dnmt1 is upregulated in muscles during regeneration. To assess the role of Dnmt1 in satellite cells during regeneration, we performed conditional knockout (cKO) of Dnmt1 specifically in skeletal muscle satellite cells using Pax7CreERT2 mice and Dnmt1 flox mice. Muscle weight and the cross-sectional area after injury were significantly lower in Dnmt1 cKO mice than in control mice. RNA sequencing analysis revealed upregulation of genes involved in cell adhesion and apoptosis in satellite cells from cKO mice. Moreover, satellite cells cultured from cKO mice exhibited a reduced number of cells. These results suggest that Dnmt1 is an essential factor for muscle regeneration and is involved in positive regulation of satellite cell number.


Assessment of CYP-Mediated Drug Interactions for Evocalcet, a New Calcimimetic Agent, Based on In Vitro Investigations and a Cocktail Study in Humans.

  • Kazuya Narushima‎ et al.
  • Clinical and translational science‎
  • 2019‎

Evocalcet is a novel calcimimetic agent for the treatment of secondary hyperparathyroidism (SHPT). This study evaluated the effects of evocalcet on inhibition and induction of cytochrome P450 (CYP) isozymes. Although drug interactions arising from reversible inhibition of CYP isozymes by evocalcet were considered unlikely based on the results of in vitro studies and static model analyses, the potential for evocalcet to cause time-dependent inhibition of CYP3A or induction of several CYP isozymes could not be ruled out. Therefore, a clinical drug-drug interaction (DDI) study to evaluate the effects of evocalcet on the pharmacokinetics (PKs) of probe substrates for CYP isozymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, and CYP3A) was conducted in healthy male volunteers using a novel cocktail combination. Evocalcet did not significantly affect the PKs of the probe substrates, confirming that CYP-mediated interactions were unlikely.


Bioabsorbable nerve conduits three-dimensionally coated with human induced pluripotent stem cell-derived neural stem/progenitor cells promote peripheral nerve regeneration in rats.

  • Ema Onode‎ et al.
  • Scientific reports‎
  • 2021‎

Peripheral nerve regeneration using nerve conduits has been less effective than autogenous nerve grafts. To overcome this hurdle, we developed a tissue-engineered nerve conduit coated with mouse induced pluripotent stem cell (iPSC)-derived neurospheres, for the first time, which accelerated nerve regeneration in mice. We previously demonstrated the long-term efficacy and safety outcomes of this hybrid nerve conduit for mouse peripheral nerve regeneration. In this study, we investigated the therapeutic potential of nerve conduits coated with human iPSC (hiPSC)-derived neurospheres in rat sciatic nerve defects, as a translational preclinical study. The hiPSC-derived quaternary neurospheres containing neural stem/progenitor cells were three-dimensionally cultured within the nerve conduit (poly L-lactide and polycaprolactone copolymer) for 14 days. Complete 5-mm defects were created as a small size peripheral nerve defect in sciatic nerves of athymic nude rats and reconstructed with nerve conduit alone (control group), nerve conduits coated with hiPSC-derived neurospheres (iPS group), and autogenous nerve grafts (autograft group) (n = 8 per group). The survival of the iPSC-derived neurospheres was continuously tracked using in vivo imaging. At 12 weeks postoperatively, motor and sensory function and histological nerve regeneration were evaluated. Before implantation, the hiPSC-derived quaternary neurospheres that three-dimensional coated the nerve conduit were differentiated into Schwann-like cells. The transplanted hiPSC-derived neurospheres survived for at least 56 days after implantation. The iPS group showed non-significance higher sensory regeneration than the autograft group. Although there was no actual motor functional nerve regeneration in the three groups: control, iPS, and autograft groups, the motor function in the iPS group recovered significantly better than that in the control group, but it did not recover to the same level as that in the autograft group. Histologically, the iPS group demonstrated significantly higher axon numbers and areas, and lower G-ratio values than the control group, whereas the autograft group demonstrated the highest axon numbers and areas and the lowest G-ratio values. Nerve conduit three-dimensionally coated with hiPSC-derived neurospheres promoted axonal regeneration and functional recovery in repairing rat sciatic nerve small size defects. Transplantation of hiPSC-derived neurospheres with nerve conduits is a promising clinical iPSC-based cell therapy for the treatment of peripheral nerve defects.


Biglycan expression and its function in human ligamentum flavum.

  • Hamidullah Salimi‎ et al.
  • Scientific reports‎
  • 2021‎

Hypertrophy of the ligamentum flavum (LF) is a major cause of lumbar spinal stenosis (LSS), and the pathology involves disruption of elastic fibers, fibrosis with increased cellularity and collagens, and/or calcification. Previous studies have implicated the increased expression of the proteoglycan family in hypertrophied LF. Furthermore, the gene expression profile in a rabbit experimental model of LF hypertrophy revealed that biglycan (BGN) is upregulated in hypertrophied LF by mechanical stress. However, the expression and function of BGN in human LF has not been well elucidated. To investigate the involvement of BGN in the pathomechanism of human ligamentum hypertrophy, first we confirmed increased expression of BGN by immunohistochemistry in the extracellular matrix of hypertrophied LF of LSS patients compared to LF without hypertrophy. Experiments using primary cell cultures revealed that BGN promoted cell proliferation. Furthermore, BGN induces changes in cell morphology and promotes myofibroblastic differentiation and cell migration. These effects are observed for both cells from hypertrophied and non-hypertrophied LF. The present study revealed hyper-expression of BGN in hypertrophied LF and function of increased proteoglycan in LF cells. BGN may play a crucial role in the pathophysiology of LF hypertrophy through cell proliferation, myofibroblastic differentiation, and cell migration.


Macrophages are requisite for angiogenesis of type H vessels during bone regeneration in mice.

  • Yukihiro Kohara‎ et al.
  • Bone‎
  • 2022‎

Macrophages are progenitors of osteoclasts as well as regulators of bone metabolism. Macrophages mediate not only bone formation by osteoblasts under physiological conditions, but also bone regeneration after fracture. The mechanisms of macrophages regulation of bone formation and regeneration remain unclear, however. Here, we demonstrate that the liposome-encapsulated Clodronate (Clod-lip) injected mouse model with cortical bone defect induced by drill-hole injury and targeted depletion of phagocytic macrophages exhibits impaired angiogenesis of type H vessels that couple angiogenesis and osteogenesis. Moreover, we identify Tgfbi (encoding TGFBI), Plau (encoding uPA) and Tgfb1 (encoding TGF-β1), through RNA-seq analysis, as genes of macrophage-secreted factors mediating angiogenesis and wound healing. The relevant mRNA was highly expressed in bone marrow-derived macrophages among bone cells, as determined through qRT-PCR. Finally, we disclose that treatment with uPA inhibitor or TGF-β receptor I, receptor II inhibitor impairs bone regeneration after injury, confirming the importance of uPA and TGF-β1 during bone regeneration. Our findings reveal a novel mechanism of bone regeneration mediated by macrophages.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: