Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 37 papers

TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma.

  • Marc Remke‎ et al.
  • Acta neuropathologica‎
  • 2013‎

Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21 % of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83 %; 55/66) and WNT (31 %; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in <5 % of cases and showed no association with increased patient age. The prognostic implications of these mutations were highly subgroup-specific. TERT mutations identified a subset with good and poor prognosis in SHH and Group 4 tumors, respectively. Monosomy 6 was mostly restricted to WNT tumors without TERT mutations. Hallmark SHH focal copy number aberrations and chromosome 10q deletion were mutually exclusive with TERT mutations within SHH tumors. TERT promoter mutations are the most common recurrent somatic point mutation in medulloblastoma, and are very highly enriched in adult SHH and WNT tumors. TERT mutations define a subset of SHH medulloblastoma with distinct demographics, cytogenetics, and outcomes.


CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity.

  • Tara Spence‎ et al.
  • Acta neuropathologica‎
  • 2014‎

Amplification of the C19MC oncogenic miRNA cluster and high LIN28 expression has been linked to a distinctly aggressive group of cerebral CNS-PNETs (group 1 CNS-PNETs) arising in young children. In this study, we sought to evaluate the diagnostic specificity of C19MC and LIN28, and the clinical and biological spectra of C19MC amplified and/or LIN28+ CNS-PNETs. We interrogated 450 pediatric brain tumors using FISH and IHC analyses and demonstrate that C19MC alteration is restricted to a sub-group of CNS-PNETs with high LIN28 expression; however, LIN28 immunopositivity was not exclusive to CNS-PNETs but was also detected in a proportion of other malignant pediatric brain tumors including rhabdoid brain tumors and malignant gliomas. C19MC amplified/LIN28+ group 1 CNS-PNETs arose predominantly in children <4 years old; a majority arose in the cerebrum but 24 % (13/54) of tumors had extra-cerebral origins. Notably, group 1 CNS-PNETs encompassed several histologic classes including embryonal tumor with abundant neuropil and true rosettes (ETANTR), medulloepithelioma, ependymoblastoma and CNS-PNETs with variable differentiation. Strikingly, gene expression and methylation profiling analyses revealed a common molecular signature enriched for primitive neural features, high LIN28/LIN28B and DNMT3B expression for all group 1 CNS-PNETs regardless of location or tumor histology. Our collective findings suggest that current known histologic categories of CNS-PNETs which include ETANTRs, medulloepitheliomas, ependymoblastomas in various CNS locations, comprise a common molecular and diagnostic entity and identify inhibitors of the LIN28/let7/PI3K/mTOR axis and DNMT3B as promising therapeutics for this distinct histogenetic entity.


Antitumor effect of fibrin glue containing temozolomide against malignant glioma.

  • Shigeo Anai‎ et al.
  • Cancer science‎
  • 2014‎

Temozolomide (TMZ), used to treat glioblastoma and malignant glioma, induces autophagy, apoptosis and senescence in cancer cells. We investigated fibrin glue (FG) as a drug delivery system for the local administration of high-concentration TMZ aimed at preventing glioma recurrence. Our high-power liquid chromatography studies indicated that FG containing TMZ (TMZ-FG) manifested a sustained drug release potential. We prepared a subcutaneous tumor model by injecting groups of mice with three malignant glioma cell lines and examined the antitumor effect of TMZ-FG. We estimated the tumor volume and performed immunostaining and immunoblotting using antibodies to Ki-67, cleaved caspase 3, LC3 and p16. When FG sheets containing TMZ (TMZ-FGS) were inserted beneath the tumors, their growth was significantly suppressed. In mice treated with peroral TMZ plus TMZ-FGS the tumors tended to be smaller than in mice whose tumors were treated with TMZ-FGS or peroral TMZ alone. The TMZ-FGS induced autophagy, apoptosis and senescence in subcutaneous glioma tumor cells. To assess the safety of TMZ-FG for normal brain, we placed it directly on the brain of living mice and stained tissue sections obtained in the acute and chronic phase immunohistochemically. In both phases, TMZ-FG failed to severely damage normal brain tissue. TMZ-FG may represent a safe new drug delivery system with sustained drug release potential to treat malignant glioma.


Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis.

  • Vijay Ramaswamy‎ et al.
  • Journal of clinical oncology : official journal of the American Society of Clinical Oncology‎
  • 2016‎

Posterior fossa ependymoma comprises two distinct molecular variants termed EPN_PFA and EPN_PFB that have a distinct biology and natural history. The therapeutic value of cytoreductive surgery and radiation therapy for posterior fossa ependymoma after accounting for molecular subgroup is not known.


p53-TIGAR axis attenuates mitophagy to exacerbate cardiac damage after ischemia.

  • Atsushi Hoshino‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2012‎

Inhibition of tumor suppressor p53 is cardioprotective against ischemic injury and provides resistance to subsequent cardiac remodeling. We investigated p53-mediated expansion of ischemic damage with a focus on mitochondrial integrity in association with autophagy and apoptosis. p53(-/-) heart showed that autophagic flux was promoted under ischemia without a change in cardiac tissue ATP content. Electron micrographs revealed that ischemic border zone in p53(-/-) mice had 5-fold greater numbers of autophagic vacuoles containing mitochondria, indicating the occurrence of mitophagy, with an apparent reduction of abnormal mitochondria compared with those in WT mice. Analysis of autophagic mediators acting downstream of p53 revealed that TIGAR (TP53-induced glycolysis and apoptosis regulator) was exclusively up-regulated in ischemic myocardium. TIGAR(-/-) mice exhibited the promotion of mitophagy followed by decrease of abnormal mitochondria and resistance to ischemic injury, consistent with the phenotype of p53(-/-) mice. In p53(-/-) and TIGAR(-/-) ischemic myocardium, ROS production was elevated and followed by Bnip3 activation which is an initiator of mitophagy. Furthermore, the activation of Bnip3 and mitophagy due to p53/TIGAR inhibition were reversed with antioxidant N-acetyl-cysteine, indicating that this adaptive response requires ROS signal. Inhibition of mitophagy using chloroquine in p53(-/-) or TIGAR(-/-) mice exacerbated accumulation of damaged mitochondria to the level of wild-type mice and attenuated cardioprotective action. These findings indicate that p53/TIGAR-mediated inhibition of myocyte mitophagy is responsible for impairment of mitochondrial integrity and subsequent apoptosis, the process of which is closely involved in p53-mediated ventricular remodeling after myocardial infarction.


NOX1/NADPH oxidase is involved in endotoxin-induced cardiomyocyte apoptosis.

  • Kuniharu Matsuno‎ et al.
  • Free radical biology & medicine‎
  • 2012‎

The functional significance of NOX1/NADPH oxidase in the heart has not been explored due to its low expression relative to other NOX homologs identified so far. We aimed to clarify the role of NOX1/NADPH oxidase in the septic heart by utilizing mice deficient in the Nox1 gene (Nox1(-/Y)). Sepsis was induced by intraperitoneal administration of lipopolysaccharides (LPS: 25mg/kg) or cecal ligation and puncture (CLP) surgery. A marked elevation of NOX1 mRNA was demonstrated in cardiac tissue, which was accompanied by increased production of reactive oxygen species (ROS). In Nox1(-/Y) treated with LPS, cardiac dysfunction and survival were significantly improved compared with wild-type mice (Nox1(+/Y)) treated with LPS. Concomitantly, LPS-induced cardiomyocyte apoptosis and activation of caspase-3 were alleviated in Nox1(-/Y). The level of phosphorylated Akt in cardiac tissue was significantly lowered in Nox1(+/Y) but not in Nox1(-/Y) treated with LPS or that underwent CLP surgery. Increased oxidation of cysteine residues of Akt and enhanced interaction of Akt with protein phosphatase 2A (PP2A), a major phosphatase implicated in the dephosphorylation of Akt, were demonstrated in LPS-treated Nox1(+/Y). These responses to LPS were significantly attenuated in Nox1(-/Y). Taken together, ROS derived from NOX1/NADPH oxidase play a pivotal role in endotoxin-induced cardiomyocyte apoptosis by increasing oxidation of Akt and subsequent dephosphorylation by PP2A. Marked up-regulation of NOX1 may affect the risk of mortality under systemic inflammatory conditions.


Intertumoral Heterogeneity within Medulloblastoma Subgroups.

  • Florence M G Cavalli‎ et al.
  • Cancer cell‎
  • 2017‎

While molecular subgrouping has revolutionized medulloblastoma classification, the extent of heterogeneity within subgroups is unknown. Similarity network fusion (SNF) applied to genome-wide DNA methylation and gene expression data across 763 primary samples identifies very homogeneous clusters of patients, supporting the presence of medulloblastoma subtypes. After integration of somatic copy-number alterations, and clinical features specific to each cluster, we identify 12 different subtypes of medulloblastoma. Integrative analysis using SNF further delineates group 3 from group 4 medulloblastoma, which is not as readily apparent through analyses of individual data types. Two clear subtypes of infants with Sonic Hedgehog medulloblastoma with disparate outcomes and biology are identified. Medulloblastoma subtypes identified through integrative clustering have important implications for stratification of future clinical trials.


Monocyte chemoattractant protein 1 expression and proliferation in primary central nervous system lymphoma.

  • Yoshinobu Takahashi‎ et al.
  • Oncology letters‎
  • 2017‎

Whether the poor prognosis of primary central nervous system lymphoma (PCNSL) compared with systemic diffuse large B cell lymphoma (DLBCL) is attributable to the immune privilege of the intracerebral location or to intrinsic differences in the biological characteristics of two types of lymphoma remains unclear. Monocyte chemoattractant protein 1 (MCP-1) is essential to support tumor cell survival and growth, and the present study aimed to compare MCP-1 expression in PCNSL and peripheral DLBCL. The present study included 19 patients with PCNSL and 16 patients with DLBCL, all of whom had tissue diagnosis and lymphoma tissue samples available for analysis. Histology included immunohistochemistry using antibodies against a panel of lymphoma markers, antibodies specific to MCP-1, and antibodies specific to tumor-associated macrophages. MCP-1 expression was quantified using immunostaining scoring. RNA extraction and reverse transcription-quantitative polymerase chain reaction were used to determine MCP-1 mRNA expression. In addition, a human brain-derived lymphoma cell line, HKBML, was stimulated with MCP-1 and cell proliferation was measured by 5-bromo-2'-deoxyuridine incorporation. The expression levels of MCP-1 mRNA and MCP-1 protein were significantly increased in PCNSL compared with peripheral DLBCL. MCP-1 induced tyrosine phosphorylation of mitogen-activated protein kinase in HKBML cells, as analyzed by western blotting. The results of the present study indicated that MCP-1 expression in PCNSL promoted cell proliferation in an autocrine manner.


Uniformity under in vitro conditions: Changes in the phenotype of cancer cell lines derived from different medulloblastoma subgroups.

  • Petr Chlapek‎ et al.
  • PloS one‎
  • 2017‎

Medulloblastoma comprises four main subgroups (WNT, SHH, Group 3 and Group 4) originally defined by transcriptional profiling. In primary medulloblastoma tissues, these groups are thought to be distinguishable using the immunohistochemical detection of β-catenin, filamin A, GAB1 and YAP1 protein markers. To investigate the utility of these markers for in vitro studies using medulloblastoma cell lines, immunoblotting and indirect immunofluorescence were employed for the detection of β-catenin, filamin A, GAB1 and YAP1 in both DAOY and D283 Med reference cell lines and the panel of six medulloblastoma cell lines derived in our laboratory from the primary tumor tissues of known molecular subgroups. Immunohistochemical detection of these markers was performed on formalin-fixed paraffin-embedded tissue of the matching primary tumors. The results revealed substantial divergences between the primary tumor tissues and matching cell lines in the immunoreactivity pattern of medulloblastoma-subgroup-specific protein markers. Regardless of the molecular subgroup of the primary tumor, all six patient-derived medulloblastoma cell lines exhibited a uniform phenotype: immunofluorescence showed the nuclear localization of YAP1, accompanied by strong cytoplasmic positivity for β-catenin and filamin A, as well as weak positivity for GAB1. The same immunoreactivity pattern was also found in both DAOY and D283 Med reference medulloblastoma cell lines. Therefore, we can conclude that various medulloblastoma cell lines tend to exhibit the same characteristics of protein marker expression under standard in vitro conditions. Such a finding emphasizes the importance of the analyses of primary tumors in clinically oriented medulloblastoma research and the urgent need to develop in vitro models of improved clinical relevance, such as 3D cultures and organotypic slice cultures.


Significance of molecular classification of ependymomas: C11orf95-RELA fusion-negative supratentorial ependymomas are a heterogeneous group of tumors.

  • Kohei Fukuoka‎ et al.
  • Acta neuropathologica communications‎
  • 2018‎

Extensive molecular analyses of ependymal tumors have revealed that supratentorial and posterior fossa ependymomas have distinct molecular profiles and are likely to be different diseases. The presence of C11orf95-RELA fusion genes in a subset of supratentorial ependymomas (ST-EPN) indicated the existence of molecular subgroups. However, the pathogenesis of RELA fusion-negative ependymomas remains elusive. To investigate the molecular pathogenesis of these tumors and validate the molecular classification of ependymal tumors, we conducted thorough molecular analyses of 113 locally diagnosed ependymal tumors from 107 patients in the Japan Pediatric Molecular Neuro-Oncology Group. All tumors were histopathologically reviewed and 12 tumors were re-classified as non-ependymomas. A combination of RT-PCR, FISH, and RNA sequencing identified RELA fusion in 19 of 29 histologically verified ST-EPN cases, whereas another case was diagnosed as ependymoma RELA fusion-positive via the methylation classifier (68.9%). Among the 9 RELA fusion-negative ST-EPN cases, either the YAP1 fusion, BCOR tandem duplication, EP300-BCORL1 fusion, or FOXO1-STK24 fusion was detected in single cases. Methylation classification did not identify a consistent molecular class within this group. Genome-wide methylation profiling successfully sub-classified posterior fossa ependymoma (PF-EPN) into PF-EPN-A (PFA) and PF-EPN-B (PFB). A multivariate analysis using Cox regression confirmed that PFA was the sole molecular marker which was independently associated with patient survival. A clinically applicable pyrosequencing assay was developed to determine the PFB subgroup with 100% specificity using the methylation status of 3 genes, CRIP1, DRD4 and LBX2. Our results emphasized the significance of molecular classification in the diagnosis of ependymomas. RELA fusion-negative ST-EPN appear to be a heterogeneous group of tumors that do not fall into any of the existing molecular subgroups and are unlikely to form a single category.


Low tumor cell content predicts favorable prognosis in germinoma patients.

  • Hirokazu Takami‎ et al.
  • Neuro-oncology advances‎
  • 2021‎

Germinoma preferentially occurs in pediatric and young adult age groups. Although they are responsive to treatment with chemotherapy and radiation, the treatment may cause long-term sequelae in their later lives. Here, we searched for clinical and histopathological features to predict the prognosis of germinoma and affect treatment response.


Rapid, economical diagnostic classification of ATRT molecular subgroup using NanoString nCounter platform.

  • Ben Ho‎ et al.
  • Neuro-oncology advances‎
  • 2024‎

Despite genomic simplicity, recent studies have reported at least 3 major atypical teratoid rhabdoid tumor (ATRT) subgroups with distinct molecular and clinical features. Reliable ATRT subgrouping in clinical settings remains challenging due to a lack of suitable biological markers, sample rarity, and the relatively high cost of conventional subgrouping methods. This study aimed to develop a reliable ATRT molecular stratification method to implement in clinical settings.


Expression of GLUT1 in Pseudopalisaded and Perivascular Tumor Cells Is an Independent Prognostic Factor for Patients With Glioblastomas.

  • Satoru Komaki‎ et al.
  • Journal of neuropathology and experimental neurology‎
  • 2019‎

Glioblastomas are highly aggressive brain tumors with a particularly poor prognosis. Glucose transporter-1 (GLUT1/SLC2A1), a uniporter that is expressed by various carcinomas and may be involved in malignant neoplasm glycometabolism, may also be related to prognosis in glioblastomas. GLUT1 is essential to central nervous system glycometabolism. To clarify the exact role of GLUT1 in glioblastoma, we assessed the expression and localization of GLUT1 in patient samples by immunohistochemistry and in situ RNA hybridization. This revealed that GLUT1 was mainly expressed on perivascular and pseudopalisaded tumor cell membranes. All samples expressed GLUT1 to some degree, with 30.8% showing stronger staining. On the basis of these data, samples were divided into high and low expression groups, although SLC2A1 mRNA expression was also higher in the high GLUT1 expression group. Kaplan-Meier survival curves revealed that high GLUT1 expression associated with lower overall survival (log-rank test, p = 0.001) and worse patient prognoses (p = 0.001). Finally, MIB-1 staining was stronger in high GLUT1 expression samples (p = 0.0004), suggesting a link with proliferation. We therefore hypothesize that GLUT1 expression in glioblastomas may enhance glycolysis, affecting patient prognosis. Examination of GLUT1 in patients with glioblastomas may provide a new prognostic tool to improve outcome.


Spatial heterogeneity in medulloblastoma.

  • A Sorana Morrissy‎ et al.
  • Nature genetics‎
  • 2017‎

Spatial heterogeneity of transcriptional and genetic markers between physically isolated biopsies of a single tumor poses major barriers to the identification of biomarkers and the development of targeted therapies that will be effective against the entire tumor. We analyzed the spatial heterogeneity of multiregional biopsies from 35 patients, using a combination of transcriptomic and genomic profiles. Medulloblastomas (MBs), but not high-grade gliomas (HGGs), demonstrated spatially homogeneous transcriptomes, which allowed for accurate subgrouping of tumors from a single biopsy. Conversely, somatic mutations that affect genes suitable for targeted therapeutics demonstrated high levels of spatial heterogeneity in MB, malignant glioma, and renal cell carcinoma (RCC). Actionable targets found in a single MB biopsy were seldom clonal across the entire tumor, which brings the efficacy of monotherapies against a single target into question. Clinical trials of targeted therapies for MB should first ensure the spatially ubiquitous nature of the target mutation.


JCOG0911 INTEGRA study: a randomized screening phase II trial of interferonβ plus temozolomide in comparison with temozolomide alone for newly diagnosed glioblastoma.

  • Toshihiko Wakabayashi‎ et al.
  • Journal of neuro-oncology‎
  • 2018‎

This study explored the superiority of temozolomide (TMZ) + interferonβ (IFNβ) to standard TMZ as treatment for newly diagnosed glioblastoma (GBM) via randomized phase II screening design.


Tumor genomic, transcriptomic, and immune profiling characterizes differential response to first-line platinum chemotherapy in high grade serous ovarian cancer.

  • Johanne I Weberpals‎ et al.
  • Cancer medicine‎
  • 2021‎

In high grade serous ovarian cancer (HGSOC), there is a spectrum of sensitivity to first line platinum-based chemotherapy. This study molecularly characterizes HGSOC patients from two distinct groups of chemotherapy responders (good vs. poor).


Effects of Microvascular Decompression on Pain Relief and Quality of Life in Late Elderly Patients with Trigeminal Neuralgia.

  • Yusuke Otsu‎ et al.
  • Neurologia medico-chirurgica‎
  • 2023‎

Pharmacotherapy is frequently selected over surgical interventions for late elderly patients with trigeminal neuralgia (TN). However, medication may affect these patients' activities of daily living (ADL). Hence, we investigated the effect of the surgical treatment of TN on ADL in older patients. This study included 11 late elderly patients >75 years old and 26 nonlate elderly patients who underwent microvascular decompression (MVD) for TN at our hospital from June 2017 to August 2021. We evaluated pre- and postsurgical ADL using the Barthel Index (BI) score, side effects of antineuralgic drugs, the BNI pain intensity score, and perioperative medication. The BI score of late elderly patients significantly improved postoperatively, particularly in transfer (pre: 10.5; post: 13.2), mobility (pre: 10; post: 12.7), and feeding (pre: 5.9 points; post: 10 points). Additionally, antineuralgic drugs caused preoperative disturbances of transfer and mobility. Trends of a longer disease duration and frequent occurrence of side effects were observed in all patients in the elderly group, compared to only 9 out of 26 patients in the younger group (100% vs. 35%, p = 0.0002). In addition, drowsiness was observed more frequently in the late elderly group (73% vs. 23%, p = 0.0084). However, the change in scores indicating improvement after surgery was significantly greater in the late elderly group, although both pre- and postoperative scores were higher in the nonlate elderly group (11.4 ± 1.9 vs. 6.9 ± 0.7, p = 0.027). Surgical treatment can improve older patients' ADL because it relieves pain and facilitates discontinuation of antineuralgic drugs. Consequently, MVD can be positively recommended for older patients with TN if general anesthesia is acceptable.


Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups.

  • Kristian W Pajtler‎ et al.
  • Cancer cell‎
  • 2015‎

Ependymal tumors across age groups are currently classified and graded solely by histopathology. It is, however, commonly accepted that this classification scheme has limited clinical utility based on its lack of reproducibility in predicting patients' outcome. We aimed at establishing a uniform molecular classification using DNA methylation profiling. Nine molecular subgroups were identified in a large cohort of 500 tumors, 3 in each anatomical compartment of the CNS, spine, posterior fossa, supratentorial. Two supratentorial subgroups are characterized by prototypic fusion genes involving RELA and YAP1, respectively. Regarding clinical associations, the molecular classification proposed herein outperforms the current histopathological classification and thus might serve as a basis for the next World Health Organization classification of CNS tumors.


A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas.

  • Hideyuki Arita‎ et al.
  • Acta neuropathologica communications‎
  • 2016‎

The prognostic impact of TERT mutations has been controversial in IDH-wild tumors, particularly in glioblastomas (GBM). The controversy may be attributable to presence of potential confounding factors such as MGMT methylation status or patients' treatment. This study aimed to evaluate the impact of TERT status on patient outcome in association with various factors in a large series of adult diffuse gliomas. We analyzed a total of 951 adult diffuse gliomas from two cohorts (Cohort 1, n = 758; Cohort 2, n = 193) for IDH1/2, 1p/19q, and TERT promoter status. The combined IDH/TERT classification divided Cohort 1 into four molecular groups with distinct outcomes. The overall survival (OS) was the shortest in IDH wild-type/TERT mutated groups, which mostly consisted of GBMs (P < 0.0001). To investigate the association between TERT mutations and MGMT methylation on survival of patients with GBM, samples from a combined cohort of 453 IDH-wild-type GBM cases treated with radiation and temozolomide were analyzed. A multivariate Cox regression model revealed that the interaction between TERT and MGMT was significant for OS (P = 0.0064). Compared with TERT mutant-MGMT unmethylated GBMs, the hazard ratio (HR) for OS incorporating the interaction was the lowest in the TERT mutant-MGMT methylated GBM (HR, 0.266), followed by the TERT wild-type-MGMT methylated (HR, 0.317) and the TERT wild-type-MGMT unmethylated GBMs (HR, 0.542). Thus, patients with TERT mutant-MGMT unmethylated GBM have the poorest prognosis. Our findings suggest that a combination of IDH, TERT, and MGMT refines the classification of grade II-IV diffuse gliomas.


Integrated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic Targets in CNS Rhabdoid Tumors.

  • Jonathon Torchia‎ et al.
  • Cancer cell‎
  • 2016‎

We recently reported that atypical teratoid rhabdoid tumors (ATRTs) comprise at least two transcriptional subtypes with different clinical outcomes; however, the mechanisms underlying therapeutic heterogeneity remained unclear. In this study, we analyzed 191 primary ATRTs and 10 ATRT cell lines to define the genomic and epigenomic landscape of ATRTs and identify subgroup-specific therapeutic targets. We found ATRTs segregated into three epigenetic subgroups with distinct genomic profiles, SMARCB1 genotypes, and chromatin landscape that correlated with differential cellular responses to a panel of signaling and epigenetic inhibitors. Significantly, we discovered that differential methylation of a PDGFRB-associated enhancer confers specific sensitivity of group 2 ATRT cells to dasatinib and nilotinib, and suggest that these are promising therapies for this highly lethal ATRT subtype.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: