Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Morin induces endothelium-dependent relaxation by activating TRPV4 channels in rat mesenteric arteries.

  • Xiaodong Zhang‎ et al.
  • European journal of pharmacology‎
  • 2019‎

Morin, a natural flavonol, has been reported to have beneficial pharmacological effects. Although its vascular protective effects have been studied, little is known about its effects on the mesenteric artery and the underlying mechanisms. Transient receptor potential vanilloid type 4 (TRPV4) channels are one of the most important Ca2+-permeable cation channels in vascular endothelial cells and play an important role in regulating rat mesenteric vascular tone. In the present study, the myogenic effects of morin were investigated using wire and pressure myography in the isolated mesenteric artery. Morin induced endothelium-dependent relaxation of isolated rat mesenteric arteries in a concentration-dependent manner. In addition, morin stimulated relaxation by activating TRPV4-mediated Ca2+ influx without affecting the nitric oxide (NO), hydrogen peroxide (H2O2), cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) pathways. In primary cultured rat mesenteric artery endothelial cells and over-expressing TRPV4 HEK 293 cells, the TRPV4 inhibitor HC067047 significantly reduced the morin-induced increase in intracellular Ca2+ concentration. Furthermore, in rats with hypertension induced by NꞶ-nitro-L-arginine methyl ester (L-NAME), oral administration of morin (50 mg/kg/day) decreased systolic blood pressure. In L-NAME-induced hypertensive rats, morin significantly improved the relaxation response of the arteries to acetylcholine. Thus, we demonstrated that morin induces endothelium-dependent relaxation in the rat mesenteric artery by acting on TRPV4 channels to mediate Ca2+ influx and attenuate blood pressure in L-NAME-induced hypertension, thereby highlighting the potential of morin in the treatment of hypertension.


Methylation of Notch3 modulates chemoresistance via P-glycoprotein.

  • Xiaoting Gu‎ et al.
  • European journal of pharmacology‎
  • 2016‎

The global gene expression and DNA methylation of genes in adriamycin-resistant human breast cancer cells (MCF-7/ADM cells) are similar to those in paclitaxel-resistant MCF-7 cells (MCF-7/PTX) and are significantly different from those in wild-type MCF-7 cells. DNA methylation is associated with chemoresistance in breast cancer and changes the characteristics of chemoresistant and chemosensitive cells. Here, we showed that the tumor-suppressor gene Notch3 was inactivated due to epigenetic silencing DNA hypermethylation in MCF-7/ADM cells. In addition, the drug efflux pump P-glycoprotein was negatively regulated by Notch3 and highly expressed in MCF-7/ADM cells. Taken together, our findings demonstrated that hypermethylation of Notch3 causes activation of P-glycoprotein in adriamycin-resistant cells.


A comprehensive screening method for investigating the potential binding targets of doxorubicin based on protein microarray.

  • Xu Wang‎ et al.
  • European journal of pharmacology‎
  • 2021‎

With the development of precision therapy, pharmacological research pays more and more attention to seek and confirm the target of drugs in order to understand the mechanism of drug action and reduce side effects. Screening candidate proteins can be effectively used to predict potential drug targets and toxicity. Therefore, a high-throughput drug-binding protein screening method based on protein microarray which contains over 21,000 human proteins was introduced in this investigation. Doxorubicin, a classical chemotherapeutic agent widely used in clinical treatment, was taken as a drug example in our protein screening study. Through microarray and bioinformatics analysis, more potential targets were found with different binding affinity to doxorubicin, and HRAS stands out as a critical protein from candidate proteins. In addition, the results revealed that the formation of the HRAS-RAF complex is promoted by doxorubicin. It is our expectation that the outcomes could benefit to understand the various effect of the doxorubicin and push the protein microarray screening to apply in the comprehensive pharmacological and toxicological investigation of other drugs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: