Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Morin induces endothelium-dependent relaxation by activating TRPV4 channels in rat mesenteric arteries.

European journal of pharmacology | 2019

Morin, a natural flavonol, has been reported to have beneficial pharmacological effects. Although its vascular protective effects have been studied, little is known about its effects on the mesenteric artery and the underlying mechanisms. Transient receptor potential vanilloid type 4 (TRPV4) channels are one of the most important Ca2+-permeable cation channels in vascular endothelial cells and play an important role in regulating rat mesenteric vascular tone. In the present study, the myogenic effects of morin were investigated using wire and pressure myography in the isolated mesenteric artery. Morin induced endothelium-dependent relaxation of isolated rat mesenteric arteries in a concentration-dependent manner. In addition, morin stimulated relaxation by activating TRPV4-mediated Ca2+ influx without affecting the nitric oxide (NO), hydrogen peroxide (H2O2), cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) pathways. In primary cultured rat mesenteric artery endothelial cells and over-expressing TRPV4 HEK 293 cells, the TRPV4 inhibitor HC067047 significantly reduced the morin-induced increase in intracellular Ca2+ concentration. Furthermore, in rats with hypertension induced by NꞶ-nitro-L-arginine methyl ester (L-NAME), oral administration of morin (50 mg/kg/day) decreased systolic blood pressure. In L-NAME-induced hypertensive rats, morin significantly improved the relaxation response of the arteries to acetylcholine. Thus, we demonstrated that morin induces endothelium-dependent relaxation in the rat mesenteric artery by acting on TRPV4 channels to mediate Ca2+ influx and attenuate blood pressure in L-NAME-induced hypertension, thereby highlighting the potential of morin in the treatment of hypertension.

Pubmed ID: 31326379 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


SD (tool)

RRID:RGD_70508

Rattus norvegicus with name SD from RGD.

View all literature mentions