Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 71 papers

A microRNA cluster in the Fragile-X region expressed during spermatogenesis targets FMR1.

  • Madhuvanthi Ramaiah‎ et al.
  • EMBO reports‎
  • 2019‎

Testis-expressed X-linked genes typically evolve rapidly. Here, we report on a testis-expressed X-linked microRNA (miRNA) cluster that despite rapid alterations in sequence has retained its position in the Fragile-X region of the X chromosome in placental mammals. Surprisingly, the miRNAs encoded by this cluster (Fx-mir) have a predilection for targeting the immediately adjacent gene, Fmr1, an unexpected finding given that miRNAs usually act in trans, not in cis Robust repression of Fmr1 is conferred by combinations of Fx-mir miRNAs induced in Sertoli cells (SCs) during postnatal development when they terminate proliferation. Physiological significance is suggested by the finding that FMRP, the protein product of Fmr1, is downregulated when Fx-mir miRNAs are induced, and that FMRP loss causes SC hyperproliferation and spermatogenic defects. Fx-mir miRNAs not only regulate the expression of FMRP, but also regulate the expression of eIF4E and CYFIP1, which together with FMRP form a translational regulatory complex. Our results support a model in which Fx-mir family members act cooperatively to regulate the translation of batteries of mRNAs in a developmentally regulated manner in SCs.


Far away from the lamppost.

  • Tudor I Oprea‎ et al.
  • PLoS biology‎
  • 2018‎

This Formal Comment responds to a recent Meta-Research Article by identifying initiatives that are already in place for funding risky exploratory research that illuminate mysteries of the dark genome.


Effects of the kinase inhibitor sorafenib on heart, muscle, liver and plasma metabolism in vivo using non-targeted metabolomics analysis.

  • Brian C Jensen‎ et al.
  • British journal of pharmacology‎
  • 2017‎

The human kinome consists of roughly 500 kinases, including 150 that have been proposed as therapeutic targets. Protein kinases regulate an array of signalling pathways that control metabolism, cell cycle progression, cell death, differentiation and survival. It is not surprising, then, that new kinase inhibitors developed to treat cancer, including sorafenib, also exhibit cardiotoxicity. We hypothesized that sorafenib cardiotoxicity is related to its deleterious effects on specific cardiac metabolic pathways given the critical roles of protein kinases in cardiac metabolism.


Class I HDAC inhibition blocks cocaine-induced plasticity by targeted changes in histone methylation.

  • Pamela J Kennedy‎ et al.
  • Nature neuroscience‎
  • 2013‎

Induction of histone acetylation in the nucleus accumbens (NAc), a key brain reward region, promotes cocaine-induced alterations in gene expression. Histone deacetylases (HDACs) tightly regulate the acetylation of histone tails, but little is known about the functional specificity of different HDAC isoforms in the development and maintenance of cocaine-induced plasticity, and previous studies of HDAC inhibitors report conflicting effects on cocaine-elicited behavioral adaptations. Here we demonstrate that specific and prolonged blockade of HDAC1 in NAc of mice increased global levels of histone acetylation, but also induced repressive histone methylation and antagonized cocaine-induced changes in behavior, an effect mediated in part through a chromatin-mediated suppression of GABAA receptor subunit expression and inhibitory tone on NAc neurons. Our findings suggest a new mechanism by which prolonged and selective HDAC inhibition can alter behavioral and molecular adaptations to cocaine and inform the development of therapeutics for cocaine addiction.


Tousled-like kinases modulate reactivation of gammaherpesviruses from latency.

  • Patrick J Dillon‎ et al.
  • Cell host & microbe‎
  • 2013‎

Kaposi's sarcoma-associated herpesvirus (KSHV) is linked to human malignancies. The majority of tumor cells harbor latent virus, and a small percentage undergo spontaneous lytic replication. Both latency and lytic replication are important for viral pathogenesis and spread, but the cellular players involved in the switch between the two viral life-cycle phases are not clearly understood. We conducted a small interfering RNA (siRNA) screen targeting the cellular kinome and identified Tousled-like kinases (TLKs) as cellular kinases that control KSHV reactivation from latency. Upon treatment of latent KSHV-infected cells with siRNAs targeting TLKs, we saw robust viral reactivation. Knockdown of TLKs in latent KSHV-infected cells induced expression of viral lytic proteins and production of infectious virus. TLKs were also found to play a role in regulating reactivation from latency of another related oncogenic gammaherpesvirus, Epstein-Barr virus. Our results establish the TLKs as cellular repressors of gammaherpesvirus reactivation.


Proteomic analysis defines kinase taxonomies specific for subtypes of breast cancer.

  • Kyla A L Collins‎ et al.
  • Oncotarget‎
  • 2018‎

Multiplexed small molecule inhibitors covalently bound to Sepharose beads (MIBs) were used to capture functional kinases in luminal, HER2-enriched and triple negative (basal-like and claudin-low) breast cancer cell lines and tumors. Kinase MIB-binding profiles at baseline without perturbation proteomically distinguished the four breast cancer subtypes. Understudied kinases, whose disease associations and pharmacology are generally unexplored, were highly represented in MIB-binding taxonomies and are integrated into signaling subnetworks with kinases that have been previously well characterized in breast cancer. Computationally it was possible to define subtypes using profiles of less than 50 of the more than 300 kinases bound to MIBs that included understudied as well as metabolic and lipid kinases. Furthermore, analysis of MIB-binding profiles established potential functional annotations for these understudied kinases. Thus, comprehensive MIBs-based capture of kinases provides a unique proteomics-based method for integration of poorly characterized kinases of the understudied kinome into functional subnetworks in breast cancer cells and tumors that is not possible using genomic strategies. The MIB-binding profiles readily defined subtype-selective differential adaptive kinome reprogramming in response to targeted kinase inhibition, demonstrating how MIB profiles can be used in determining dynamic kinome changes that result in subtype selective phenotypic state changes.


A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles.

  • Aravind Subramanian‎ et al.
  • Cell‎
  • 2017‎

We previously piloted the concept of a Connectivity Map (CMap), whereby genes, drugs, and disease states are connected by virtue of common gene-expression signatures. Here, we report more than a 1,000-fold scale-up of the CMap as part of the NIH LINCS Consortium, made possible by a new, low-cost, high-throughput reduced representation expression profiling method that we term L1000. We show that L1000 is highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts. We further show that the expanded CMap can be used to discover mechanism of action of small molecules, functionally annotate genetic variants of disease genes, and inform clinical trials. The 1.3 million L1000 profiles described here, as well as tools for their analysis, are available at https://clue.io.


Prolonged tau clearance and stress vulnerability rescue by pharmacological activation of autophagy in tauopathy neurons.

  • M Catarina Silva‎ et al.
  • Nature communications‎
  • 2020‎

Tauopathies are neurodegenerative diseases associated with accumulation of abnormal tau protein in the brain. Patient iPSC-derived neuronal cell models replicate disease-relevant phenotypes ex vivo that can be pharmacologically targeted for drug discovery. Here, we explored autophagy as a mechanism to reduce tau burden in human neurons and, from a small-molecule screen, identify the mTOR inhibitors OSI-027, AZD2014 and AZD8055. These compounds are more potent than rapamycin, and robustly downregulate phosphorylated and insoluble tau, consequently reducing tau-mediated neuronal stress vulnerability. MTORC1 inhibition and autophagy activity are directly linked to tau clearance. Notably, single-dose treatment followed by washout leads to a prolonged reduction of tau levels and toxicity for 12 days, which is mirrored by a sustained effect on mTORC1 inhibition and autophagy. This new insight into the pharmacodynamics of mTOR inhibitors in regulation of neuronal autophagy may contribute to development of therapies for tauopathies.


ELAVL4, splicing, and glutamatergic dysfunction precede neuron loss in MAPT mutation cerebral organoids.

  • Kathryn R Bowles‎ et al.
  • Cell‎
  • 2021‎

Frontotemporal dementia (FTD) because of MAPT mutation causes pathological accumulation of tau and glutamatergic cortical neuronal death by unknown mechanisms. We used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration. At 2 months, mutant organoids show upregulated expression of MAPT, glutamatergic signaling pathways, and regulators, including the RNA-binding protein ELAVL4, and increased stress granules. Over the following 4 months, mutant organoids accumulate splicing changes, disruption of autophagy function, and build-up of tau and P-tau-S396. By 6 months, tau-V337M organoids show specific loss of glutamatergic neurons as seen in individuals with FTD. Mutant neurons are susceptible to glutamate toxicity, which can be rescued pharmacologically by the PIKFYVE kinase inhibitor apilimod. Our results demonstrate a sequence of events that precede neurodegeneration, revealing molecular pathways associated with glutamate signaling as potential targets for therapeutic intervention in FTD.


SOX4 and SMARCA4 cooperatively regulate PI3k signaling through transcriptional activation of TGFBR2.

  • Gaurav A Mehta‎ et al.
  • NPJ breast cancer‎
  • 2021‎

Dysregulation of PI3K/Akt signaling is a dominant feature in basal-like or triple-negative breast cancers (TNBC). However, the mechanisms regulating this pathway are largely unknown in this subset of aggressive tumors. Here we demonstrate that the transcription factor SOX4 is a key regulator of PI3K signaling in TNBC. Genomic and proteomic analyses coupled with mechanistic studies identified TGFBR2 as a direct transcriptional target of SOX4 and demonstrated that TGFBR2 is required to mediate SOX4-dependent PI3K signaling. We further report that SOX4 and the SWI/SNF ATPase SMARCA4, which are uniformly overexpressed in basal-like tumors, form a previously unreported complex that is required to maintain an open chromatin conformation at the TGFBR2 regulatory regions in order to mediate TGFBR2 expression and PI3K signaling. Collectively, our findings delineate the mechanism by which SOX4 and SMARCA4 cooperatively regulate PI3K/Akt signaling and suggest that this complex may play an essential role in TNBC genesis and/or progression.


FOXA1 and adaptive response determinants to HER2 targeted therapy in TBCRC 036.

  • Steven P Angus‎ et al.
  • NPJ breast cancer‎
  • 2021‎

Inhibition of the HER2/ERBB2 receptor is a keystone to treating HER2-positive malignancies, particularly breast cancer, but a significant fraction of HER2-positive (HER2+) breast cancers recur or fail to respond. Anti-HER2 monoclonal antibodies, like trastuzumab or pertuzumab, and ATP active site inhibitors like lapatinib, commonly lack durability because of adaptive changes in the tumor leading to resistance. HER2+ cell line responses to inhibition with lapatinib were analyzed by RNAseq and ChIPseq to characterize transcriptional and epigenetic changes. Motif analysis of lapatinib-responsive genomic regions implicated the pioneer transcription factor FOXA1 as a mediator of adaptive responses. Lapatinib in combination with FOXA1 depletion led to dysregulation of enhancers, impaired adaptive upregulation of HER3, and decreased proliferation. HER2-directed therapy using clinically relevant drugs (trastuzumab with or without lapatinib or pertuzumab) in a 7-day clinical trial designed to examine early pharmacodynamic response to antibody-based anti-HER2 therapy showed reduced FOXA1 expression was coincident with decreased HER2 and HER3 levels, decreased proliferation gene signatures, and increased immune gene signatures. This highlights the importance of the immune response to anti-HER2 antibodies and suggests that inhibiting FOXA1-mediated adaptive responses in combination with HER2 targeting is a potential therapeutic strategy.


Light-controlled modulation of gene expression by chemical optoepigenetic probes.

  • Surya A Reis‎ et al.
  • Nature chemical biology‎
  • 2016‎

Epigenetic gene regulation is a dynamic process orchestrated by chromatin-modifying enzymes. Many of these master regulators exert their function through covalent modification of DNA and histone proteins. Aberrant epigenetic processes have been implicated in the pathophysiology of multiple human diseases. Small-molecule inhibitors have been essential to advancing our understanding of the underlying molecular mechanisms of epigenetic processes. However, the resolution offered by small molecules is often insufficient to manipulate epigenetic processes with high spatiotemporal control. Here we present a generalizable approach, referred to as 'chemo-optical modulation of epigenetically regulated transcription' (COMET), enabling high-resolution, optical control of epigenetic mechanisms based on photochromic inhibitors of human histone deacetylases using visible light. COMET probes may be translated into new therapeutic strategies for diseases where conditional and selective epigenome modulation is required.


Crizotinib inhibits NF2-associated schwannoma through inhibition of focal adhesion kinase 1.

  • Scott Troutman‎ et al.
  • Oncotarget‎
  • 2016‎

Neurofibromatosis type 2 (NF2) is a dominantly inherited autosomal disease characterized by schwannomas of the 8th cranial nerve. The NF2 tumor suppressor gene encodes for Merlin, a protein implicated as a suppressor of multiple cellular signaling pathways. To identify potential drug targets in NF2-associated malignancies we assessed the consequences of inhibiting the tyrosine kinase receptor MET. We identified crizotinib, a MET and ALK inhibitor, as a potent inhibitor of NF2-null Schwann cell proliferation in vitro and tumor growth in vivo. To identify the target/s of crizotnib we employed activity-based protein profiling (ABPP), leading to identification of FAK1 (PTK2) as the relevant target of crizotinib inhibition in NF2-null schwannoma cells. Subsequent studies confirm that inhibition of FAK1 is sufficient to suppress tumorigenesis in animal models of NF2 and that crizotinib-resistant forms of FAK1 can rescue the effects of treatment. These studies identify a FDA approved drug as a potential treatment for NF2 and delineate the mechanism of action in NF2-null Schwann cells.


MicroRNA 9-3p targets β1 integrin to sensitize claudin-low breast cancer cells to MEK inhibition.

  • Jon S Zawistowski‎ et al.
  • Molecular and cellular biology‎
  • 2013‎

MEK1/2 inhibitors such as AZD6244 are in clinical trials for the treatment of multiple cancers, including breast cancer. Targeted kinase inhibition can induce compensatory kinome changes, rendering single therapeutic agents ineffective. To identify target proteins to be used in a combinatorial approach to inhibit tumor cell growth, we used a novel strategy that identified microRNAs (miRNAs) that synergized with AZD6244 to inhibit the viability of the claudin-low breast cancer cell line MDA-MB-231. Screening of a miRNA mimic library revealed the ability of miR-9-3p to significantly enhance AZD6244-induced extracellular signal-regulated kinase inhibition and growth arrest, while miR-9-3p had little effect on growth alone. Promoter methylation of mir-9 genes correlated with low expression of miR-9-3p in different breast cancer cell lines. Consistent with miR-9-3p having synthetic enhancer tumor suppressor characteristics, miR-9-3p expression in combination with MEK inhibitor caused a sustained loss of c-MYC expression and growth inhibition. The β1 integrin gene (ITGB1) was identified as a new miR-9-3p target, and the growth inhibition seen with small interfering RNA knockdown or antibody blocking of ITGB1 in combination with MEK inhibitor phenocopied the growth inhibition seen with miR-9-3p plus AZD6244. The miRNA screen led to identification of a druggable protein, ITGB1, whose functional inhibition synergizes with MEK inhibitor.


A selective HDAC 1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behavior in two mood-related tests.

  • Frederick A Schroeder‎ et al.
  • PloS one‎
  • 2013‎

Psychiatric diseases, including schizophrenia, bipolar disorder and major depression, are projected to lead global disease burden within the next decade. Pharmacotherapy, the primary--albeit often ineffective--treatment method, has remained largely unchanged over the past 50 years, highlighting the need for novel target discovery and improved mechanism-based treatments. Here, we examined in wild type mice the impact of chronic, systemic treatment with Compound 60 (Cpd-60), a slow-binding, benzamide-based inhibitor of the class I histone deacetylase (HDAC) family members, HDAC1 and HDAC2, in mood-related behavioral assays responsive to clinically effective drugs. Cpd-60 treatment for one week was associated with attenuated locomotor activity following acute amphetamine challenge. Further, treated mice demonstrated decreased immobility in the forced swim test. These changes are consistent with established effects of clinical mood stabilizers and antidepressants, respectively. Whole-genome expression profiling of specific brain regions (prefrontal cortex, nucleus accumbens, hippocampus) from mice treated with Cpd-60 identified gene expression changes, including a small subset of transcripts that significantly overlapped those previously reported in lithium-treated mice. HDAC inhibition in brain was confirmed by increased histone acetylation both globally and, using chromatin immunoprecipitation, at the promoter regions of upregulated transcripts, a finding consistent with in vivo engagement of HDAC targets. In contrast, treatment with suberoylanilide hydroxamic acid (SAHA), a non-selective fast-binding, hydroxamic acid HDAC 1/2/3/6 inhibitor, was sufficient to increase histone acetylation in brain, but did not alter mood-related behaviors and had dissimilar transcriptional regulatory effects compared to Cpd-60. These results provide evidence that selective inhibition of HDAC1 and HDAC2 in brain may provide an epigenetic-based target for developing improved treatments for mood disorders and other brain disorders with altered chromatin-mediated neuroplasticity.


Application of multiplexed kinase inhibitor beads to study kinome adaptations in drug-resistant leukemia.

  • Matthew J Cooper‎ et al.
  • PloS one‎
  • 2013‎

Protein kinases play key roles in oncogenic signaling and are a major focus in the development of targeted cancer therapies. Imatinib, a BCR-Abl tyrosine kinase inhibitor, is a successful front-line treatment for chronic myelogenous leukemia (CML). However, resistance to imatinib may be acquired by BCR-Abl mutations or hyperactivation of Src family kinases such as Lyn. We have used multiplexed kinase inhibitor beads (MIBs) and quantitative mass spectrometry (MS) to compare kinase expression and activity in an imatinib-resistant (MYL-R) and -sensitive (MYL) cell model of CML. Using MIB/MS, expression and activity changes of over 150 kinases were quantitatively measured from various protein kinase families. Statistical analysis of experimental replicates assigned significance to 35 of these kinases, referred to as the MYL-R kinome profile. MIB/MS and immunoblotting confirmed the over-expression and activation of Lyn in MYL-R cells and identified additional kinases with increased (MEK, ERK, IKKα, PKCβ, NEK9) or decreased (Abl, Kit, JNK, ATM, Yes) abundance or activity. Inhibiting Lyn with dasatinib or by shRNA-mediated knockdown reduced the phosphorylation of MEK and IKKα. Because MYL-R cells showed elevated NF-κB signaling relative to MYL cells, as demonstrated by increased IκBα and IL-6 mRNA expression, we tested the effects of an IKK inhibitor (BAY 65-1942). MIB/MS and immunoblotting revealed that BAY 65-1942 increased MEK/ERK signaling and that this increase was prevented by co-treatment with a MEK inhibitor (AZD6244). Furthermore, the combined inhibition of MEK and IKKα resulted in reduced IL-6 mRNA expression, synergistic loss of cell viability and increased apoptosis. Thus, MIB/MS analysis identified MEK and IKKα as important downstream targets of Lyn, suggesting that co-targeting these kinases may provide a unique strategy to inhibit Lyn-dependent imatinib-resistant CML. These results demonstrate the utility of MIB/MS as a tool to identify dysregulated kinases and to interrogate kinome dynamics as cells respond to targeted kinase inhibition.


Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome.

  • Steven D Sheridan‎ et al.
  • PloS one‎
  • 2011‎

Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. In addition to cognitive deficits, FXS patients exhibit hyperactivity, attention deficits, social difficulties, anxiety, and other autistic-like behaviors. FXS is caused by an expanded CGG trinucleotide repeat in the 5' untranslated region of the Fragile X Mental Retardation (FMR1) gene leading to epigenetic silencing and loss of expression of the Fragile X Mental Retardation protein (FMRP). Despite the known relationship between FMR1 CGG repeat expansion and FMR1 silencing, the epigenetic modifications observed at the FMR1 locus, and the consequences of the loss of FMRP on human neurodevelopment and neuronal function remain poorly understood. To address these limitations, we report on the generation of induced pluripotent stem cell (iPSC) lines from multiple patients with FXS and the characterization of their differentiation into post-mitotic neurons and glia. We show that clones from reprogrammed FXS patient fibroblast lines exhibit variation with respect to the predominant CGG-repeat length in the FMR1 gene. In two cases, iPSC clones contained predominant CGG-repeat lengths shorter than measured in corresponding input population of fibroblasts. In another instance, reprogramming a mosaic patient having both normal and pre-mutation length CGG repeats resulted in genetically matched iPSC clonal lines differing in FMR1 promoter CpG methylation and FMRP expression. Using this panel of patient-specific, FXS iPSC models, we demonstrate aberrant neuronal differentiation from FXS iPSCs that is directly correlated with epigenetic modification of the FMR1 gene and a loss of FMRP expression. Overall, these findings provide evidence for a key role for FMRP early in human neurodevelopment prior to synaptogenesis and have implications for modeling of FXS using iPSC technology. By revealing disease-associated cellular phenotypes in human neurons, these iPSC models will aid in the discovery of novel therapeutics for FXS and other autism-spectrum disorders sharing common pathophysiology.


Defining the functional domain of programmed cell death 10 through its interactions with phosphatidylinositol-3,4,5-trisphosphate.

  • Christopher F Dibble‎ et al.
  • PloS one‎
  • 2010‎

Cerebral cavernous malformations (CCM) are vascular abnormalities of the central nervous system predisposing blood vessels to leakage, leading to hemorrhagic stroke. Three genes, Krit1 (CCM1), OSM (CCM2), and PDCD10 (CCM3) are involved in CCM development. PDCD10 binds specifically to PtdIns(3,4,5)P3 and OSM. Using threading analysis and multi-template modeling, we constructed a three-dimensional model of PDCD10. PDCD10 appears to be a six-helical-bundle protein formed by two heptad-repeat-hairpin structures (alpha1-3 and alpha4-6) sharing the closest 3D homology with the bacterial phosphate transporter, PhoU. We identified a stretch of five lysines forming an amphipathic helix, a potential PtdIns(3,4,5)P3 binding site, in the alpha5 helix. We generated a recombinant wild-type (WT) and three PDCD10 mutants that have two (Delta2KA), three (Delta3KA), and five (Delta5KA) K to A mutations. Delta2KA and Delta3KA mutants hypothetically lack binding residues to PtdIns(3,4,5)P3 at the beginning and the end of predicted helix, while Delta5KA completely lacks all predicted binding residues. The WT, Delta2KA, and Delta3KA mutants maintain their binding to PtdIns(3,4,5)P3. Only the Delta5KA abolishes binding to PtdIns(3,4,5)P3. Both Delta5KA and WT show similar secondary and tertiary structures; however, Delta5KA does not bind to OSM. When WT and Delta5KA are co-expressed with membrane-bound constitutively-active PI3 kinase (p110-CAAX), the majority of the WT is co-localized with p110-CAAX at the plasma membrane where PtdIns(3,4,5)P3 is presumably abundant. In contrast, the Delta5KA remains in the cytoplasm and is not present in the plasma membrane. Combining computational modeling and biological data, we propose that the CCM protein complex functions in the PI3K signaling pathway through the interaction between PDCD10 and PtdIns(3,4,5)P3.


Activation of WNT and CREB signaling pathways in human neuronal cells in response to the Omega-3 fatty acid docosahexaenoic acid (DHA).

  • Wen-Ning Zhao‎ et al.
  • Molecular and cellular neurosciences‎
  • 2019‎

A subset of individuals with major depressive disorder (MDD) elects treatment with complementary and alternative medicines (CAMs), including the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Previous studies in rodents suggest that DHA modulates neurodevelopmental processes, including adult neurogenesis and neuroplasticity, but the molecular and cellular mechanisms of DHA's potential therapeutic effect in the context of human neurobiology have not been well established. Here we sought to address this knowledge gap by investigating the effects of DHA using human iPSC-derived neural progenitor cells (NPCs) and post-mitotic neurons using pathway-selective reporter genes, multiplexed mRNA expression profiling, and a panel of metabolism-based viability assays. Finally, real-time, live-cell imaging was employed to monitor neurite outgrowth upon DHA treatment. Overall, these studies showed that DHA treatment (0-50 μM) significantly upregulated both WNT and CREB signaling pathways in human neuronal cells in a dose-dependent manner with 2- to 3-fold increases in pathway activation. Additionally, we observed that DHA treatment enhanced survival of iPSC-derived NPCs and differentiation of post-mitotic neurons with live-cell imaging, revealing increased neurite outgrowth with DHA treatment within 24 h. Taken together, this study provides evidence that DHA treatment activates critical pathways regulating neuroplasticity, which may contribute to enhanced neuronal cell viability and neuronal connectivity. The extent to which these pathways represent molecular mechanisms underlying the potential beneficial effects of omega-3 fatty acids in MDD and other brain disorders merits further investigation.


Non-Targeted Metabolomics Analysis of the Effects of Tyrosine Kinase Inhibitors Sunitinib and Erlotinib on Heart, Muscle, Liver and Serum Metabolism In Vivo.

  • Brian C Jensen‎ et al.
  • Metabolites‎
  • 2017‎

Background: More than 90 tyrosine kinases have been implicated in the pathogenesis of malignant transformation and tumor angiogenesis. Tyrosine kinase inhibitors (TKIs) have emerged as effective therapies in treating cancer by exploiting this kinase dependency. The TKI erlotinib targets the epidermal growth factor receptor (EGFR), whereas sunitinib targets primarily vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR).TKIs that impact the function of non-malignant cells and have on- and off-target toxicities, including cardiotoxicities. Cardiotoxicity is very rare in patients treated with erlotinib, but considerably more common after sunitinib treatment. We hypothesized that the deleterious effects of TKIs on the heart were related to their impact on cardiac metabolism. Methods: Female FVB/N mice (10/group) were treated with therapeutic doses of sunitinib (40 mg/kg), erlotinib (50 mg/kg), or vehicle daily for two weeks. Echocardiographic assessment of the heart in vivo was performed at baseline and on Day 14. Heart, skeletal muscle, liver and serum were flash frozen and prepped for non-targeted GC-MS metabolomics analysis. Results: Compared to vehicle-treated controls, sunitinib-treated mice had significant decreases in systolic function, whereas erlotinib-treated mice did not. Non-targeted metabolomics analysis of heart identified significant decreases in docosahexaenoic acid (DHA), arachidonic acid (AA)/ eicosapentaenoic acid (EPA), O-phosphocolamine, and 6-hydroxynicotinic acid after sunitinib treatment. DHA was significantly decreased in skeletal muscle (quadriceps femoris), while elevated cholesterol was identified in liver and elevated ethanolamine identified in serum. In contrast, erlotinib affected only one metabolite (spermidine significantly increased). Conclusions: Mice treated with sunitinib exhibited systolic dysfunction within two weeks, with significantly lower heart and skeletal muscle levels of long chain omega-3 fatty acids docosahexaenoic acid (DHA), arachidonic acid (AA)/eicosapentaenoic acid (EPA) and increased serum O-phosphocholine phospholipid. This is the first link between sunitinib-induced cardiotoxicity and depletion of the polyunsaturated fatty acids (PUFAs) and inflammatory mediators DHA and AA/EPA in the heart. These compounds have important roles in maintaining mitochondrial function, and their loss may contribute to cardiac dysfunction.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: