Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 79 papers

First Report of Complete Sequence of a blaNDM-13-Harboring Plasmid from an Escherichia coli ST5138 Clinical Isolate.

  • Jingnan Lv‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2016‎

Since the first report of blaNDM-1, 16 blaNDM variants have been identified among Gram-negative bacteria worldwide. Recently, a novel blaNDM variant, blaNDM-13, was identified in the chromosome of an ST101 Escherichia coli isolate from Nepal. Here we first reported plasmid-mediated blaNDM-13 in a carbapenem-resistant E. coli ST5138 clinical isolate associated with hospital-acquired urinary tract infection from China. blaNDM-13 and blaSHV-12 coexisted on the a ~54 Kb self-transferable plasmid. Compared with NDM-1, NDM-13, NDM-3, and NDM-4 had two amino acid substitutions (D95N and M154L), one amino acid substitution (D95N) and one amino acid substitutions (M154L), respectively. Complete plasmid sequencing showed that blaNDM-13-harboring plasmid (pNDM13-DC33) was highly similar to the blaNDM-1-harboring IncX3 plasmid pNDM-HN380, a common blaNDM-harboring vector circulating in China. In accordance with the structure of pNDM-HN380, pNDM13-DC33 consists of a 33-kb backbone encoding plasmid replication (repB), stability partitioning, and transfer (tra, trb, and pil) functions, and a 21-kb antimicrobial resistance region with high GC content between umuD and mpr genes. In conclusion, the present study is the first report of a plasmid-encoded blaNDM-13 and the complete sequence of a blaNDM-13-harboring plasmid (pNDM13-DC33). blaNDM-13 maybe originate from blaNDM-1 located on a pNDM-HN380-like plasmid by sequential mutations.


Serum microRNA expression profile distinguishes enterovirus 71 and coxsackievirus 16 infections in patients with hand-foot-and-mouth disease.

  • Lunbiao Cui‎ et al.
  • PloS one‎
  • 2011‎

Altered circulating microRNA (miRNA) profiles have been noted in patients with microbial infections. We compared host serum miRNA levels in patients with hand-foot-and-mouth disease (HFMD) caused by enterovirus 71 (EV71) and coxsackievirus 16 (CVA16) as well as in other microbial infections and in healthy individuals. Among 664 different miRNAs analyzed using a miRNA array, 102 were up-regulated and 26 were down-regulated in sera of patients with enteroviral infections. Expression levels of ten candidate miRNAs were further evaluated by quantitative real-time PCR assays. A receiver operating characteristic (ROC) curve analysis revealed that six miRNAs (miR-148a, miR-143, miR-324-3p, miR-628-3p, miR-140-5p, and miR-362-3p) were able to discriminate patients with enterovirus infections from healthy controls with area under curve (AUC) values ranged from 0.828 to 0.934. The combined six miRNA using multiple logistic regression analysis provided not only a sensitivity of 97.1% and a specificity of 92.7% but also a unique profile that differentiated enterovirial infections from other microbial infections. Expression levels of five miRNAs (miR-148a, miR-143, miR-324-3p, miR-545, and miR-140-5p) were significantly increased in patients with CVA16 versus those with EV71 (p<0.05). Combination of miR-545, miR-324-3p, and miR-143 possessed a moderate ability to discrimination between CVA16 and EV71 with an AUC value of 0.761. These data indicate that sera from patients with different subtypes of enteroviral infection express unique miRNA profiles. Serum miRNA expression profiles may provide supplemental biomarkers for diagnosing and subtyping enteroviral HFMD infections.


RNA-Seq Reveals Acute Manganese Exposure Increases Endoplasmic Reticulum Related and Lipocalin mRNAs in Caenorhabditis elegans.

  • Martina Rudgalvyte‎ et al.
  • Journal of biochemical and molecular toxicology‎
  • 2016‎

Manganese (Mn) is an essential nutrient; nonetheless, excessive amounts can accumulate in brain tissues causing manganism, a severe neurological condition. Previous studies have suggested oxidative stress, mitochondria dysfunction, and impaired metabolism pathways as routes for Mn toxicity. Here, we used the nematode Caenorhabditis elegans to analyze gene expression changes after acute Mn exposure using RNA-Seq. L1 stage animals were exposed to 50 mM MnCl2 for 30 min and analyzed at L4. We identified 746 up- and 1828 downregulated genes (FDR corrected p < 0.05; two-fold change) that included endoplasmic reticulum related abu and fkb family genes, as well as six of seven lipocalin-related (lpr) family members. These were also verified by qRT-PCR. RNA interference of lpr-5 showed a dramatic increase in whole body vulnerability to Mn exposure. Our studies demonstrate that Mn exposure alters gene transcriptional levels in different cell stress pathways that may ultimately contribute to its toxic effects.


Trends in the development of miRNA bioinformatics tools.

  • Liang Chen‎ et al.
  • Briefings in bioinformatics‎
  • 2019‎

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression via recognition of cognate sequences and interference of transcriptional, translational or epigenetic processes. Bioinformatics tools developed for miRNA study include those for miRNA prediction and discovery, structure, analysis and target prediction. We manually curated 95 review papers and ∼1000 miRNA bioinformatics tools published since 2003. We classified and ranked them based on citation number or PageRank score, and then performed network analysis and text mining (TM) to study the miRNA tools development trends. Five key trends were observed: (1) miRNA identification and target prediction have been hot spots in the past decade; (2) manual curation and TM are the main methods for collecting miRNA knowledge from literature; (3) most early tools are well maintained and widely used; (4) classic machine learning methods retain their utility; however, novel ones have begun to emerge; (5) disease-associated miRNA tools are emerging. Our analysis yields significant insight into the past development and future directions of miRNA tools.


Distinct mucosal microbial communities in infants with surgical necrotizing enterocolitis correlate with age and antibiotic exposure.

  • Joann Romano-Keeler‎ et al.
  • PloS one‎
  • 2018‎

Necrotizing enterocolitis (NEC) is the most common surgical emergency in preterm infants, and pathogenesis associates with changes in the fecal microbiome. As fecal samples incompletely represent microbial communities in intestinal mucosa, we sought to determine the NEC tissue-specific microbiome and assess its contribution to pathogenesis.


Characteristics of Gut Microbiota in Patients With Rheumatoid Arthritis in Shanghai, China.

  • Yang Sun‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2019‎

Little is known regarding differences in the gut microbiomes of rheumatoid arthritis (RA) patients and healthy cohorts in China. This study aimed to identify differences in the fecal microbiomes of 66 Chinese patients with RA and 60 healthy Chinese controls. The V3-V4 variable regions of bacterial 16S rRNA genes were sequenced with the Illumina system to define the bacterial composition. The alpha-diversity index of the microbiome of the RA patients was significantly lower than that of the control group. The bacterial genera Bacteroides (p = 0.02202) and Escherichia-Shigella (p = 0.03137) were more abundant in RA patients. In contrast, Lactobacillus (p = 0.000014), Alloprevotella (p = 0.0000008615), Enterobacter (p = 0.000005759), and Odoribacter (p = 0.0000166) were less abundant in the RA group than in the control group. Spearman correlation analysis of blood physiological measures of RA showed that bacterial genera such as Dorea and Ruminococcus were positively correlated with RF-IgA and anti-CCP antibodies. Furthermore, Alloprevotella and Parabacteroides were positively correlated with the erythrocyte sedimentation rate, and Prevotella-2 and Alloprevotella were positively correlated with C-reactive protein, both biomarkers of inflammation. These findings suggest that the gut microbiota may contribute to RA development via interactions with the host immune system.


Short-Term Lincomycin Exposure Depletion of Murine Microbiota Affects Short-Chain Fatty Acids and Intestinal Morphology and Immunity.

  • Shunfen Zhang‎ et al.
  • Antibiotics (Basel, Switzerland)‎
  • 2020‎

Lincomycin, as one of the most commonly used antibiotics, may cause intestinal injury, enteritis and other side effects, but it remains unknown whether these effects are associated with microbial changes and the effects of different doses of lincomycin on infants. Here, 21-day old mice were exposed to 1 and 5 g/L lincomycin to explore the effects of lincomycin on the gut microbiota, metabolites and inflammation. Compared to the control mice, 1 g/L lincomycin exposure decreased the body weight gain of mice (p < 0.05). Both 1 and 5 g/L lincomycin exposure reduced the diversity and microbial composition of mice (p < 0.05). Furthermore, 1 and 5 g/L lincomycin reduced the relative concentrations of acetate, propionate, butyrate, valerate, isobutyric acid and isovaleric acid in the colon chyme of mice (p < 0.05). In addition, 5 g/L lincomycin exposure reduced the villus height, crypt depth, and relative expression of TLR2, TLR3, TLR4, IL-18, TNF-α, and p65 in the jejunum of mice (p < 0.05), while 1 g/L lincomycin exposure reduced the relative expression of TLR2, TLR3, TNF-α, and p65 (p < 0.05). Collectively, these results highlight the depletion effect of short-term lincomycin exposure on microbiota and the further regulatory effect on intestinal morphology and immunosuppression in infant mice.


Comparison of xMAP Salmonella Serotyping Assay With Traditional Serotyping and Discordance Resolution by Whole Genome Sequencing.

  • Yun Luo‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2020‎

Salmonella spp. are a major cause of foodborne illness throughout the world. Traditional serotyping by antisera agglutination has been used as a standard identification method for many years but newer nucleic acid-based tests have become available that may provide advantages in workflow and test turnaround time. In this study, we evaluated the Luminex® xMAP® Salmonella Serotyping Assay (SSA), a multiplex nucleic acid test capable of identifying 85% of the most common Salmonella serotypes, in comparison to the traditional serum agglutination test (SAT) on 4 standard strains and 255 isolates from human (224), environmental, and food (31) samples. Of the total of 259 isolates, 256 could be typed by the SSA. Of these, 197 (77.0%) were fully typed and 59 (23.0%) were partially typed. By SAT, 246 of the 259 isolates (95%) were successfully typed. Sixty isolates had discrepant results between SAT and SSA and were resolved using whole genome sequencing (WGS). By SAT, 80.0% (48/60) of the isolates were consistent with WGS while by SSA 91.7% (55/60) were partially consistent with WGS. By serovar, all 30 serovars except one tested were fully or partially typable. The workflow comparison showed that SSA provided advantages over SAT with a hands-on time (HOT) of 3.5 min and total turnaround time (TAT) of 6 h, as compared to 1 h HOT and 2-6 days TAT for SAT. Overall, this study showed that molecular serotyping is promising as a rapid method for Salmonella serotyping with good accuracy for typing most common Salmonella serovars circulating in China.


TDP-1/TDP-43 potentiates human α-Synuclein (HASN) neurodegeneration in Caenorhabditis elegans.

  • Linjing Shen‎ et al.
  • Biochimica et biophysica acta. Molecular basis of disease‎
  • 2020‎

TAR DNA binding protein (TDP-43) is a DNA/RNA binding protein whose pathological role in amyotrophic lateral sclerosis (ALS) and frontal temporal lobe dementia (FTLD) via formation of protein aggregates is well established. In contrast, knowledge concerning its interactions with other neuropathological aggregating proteins is poorly understood. Human α-synuclein (HASN) elicits dopaminergic neuron degeneration via protein aggregation in Parkinson's disease. HASN protein aggregates are also found in TDP-43 lesions and colocalize in Lewy Body Dementia (LBD). To better understand the interactions of TDP-43 and HASN, we investigated the effects of genetic deletion of tdp-1, the Caenorhabditis elegans ortholog of human TDP-43, as well as overexpression of TDP-43, in transgenic models overexpressing HASNWT and HASNA53T. Tdp-1 deletion improved the posture, movement, and developmental delay observed in transgenic animals pan-neuronally overexpressing HASNA53T, and attenuated the loss and impairment of dopaminergic neurons caused by HASNA53T or HASNWT overexpression. Tdp-1 deletion also led to a decrease in protein level, mRNA level and aggregate formation of HASN in living animals. RNA-seq studies suggested that tdp-1 supports expression of lysosomal genes and decreases expression of genes involved in heat shock. RNAi demonstrated that heat shock proteins can mediate HASN neuropathology. Co-overexpression of both human TDP-43 and HASNWT resulted in locomotion deficits, shorter lifespan, and more severe dopaminergic neuron impairments compared to single transgenes. Our results suggest TDP-1/TDP-43 potentiates HASN mediated neurodegeneration in C. elegans. This study indicates a multifunctional role for TDP-1/TDP-43 in neurodegeneration involving HASN.


Genomic evolution and virulence association of Clostridioides difficile sequence type 37 (ribotype 017) in China.

  • Xingxing Xu‎ et al.
  • Emerging microbes & infections‎
  • 2021‎

Clostridioides difficile sequence type (ST) 37 (ribotype 017) is one of the most prevalent genotypes circulating in China. However, its genomic evolution and virulence determinants were rarely explored. Whole-genome sequencing, phylogeographic and phylogenetic analyses were conducted for C. difficile ST37 isolates. The 325 ST37 genomes from six continents, including North America (n = 66), South America (n = 4), Oceania (n = 7), Africa (n = 9), Europe (n = 138) and Asia (n = 101), were clustered into six major lineages, with region-dependent distributions, harbouring an array of antibiotic-resistance genes. The ST37 strains from China were divided into four distinct sublineages, showing five importation times and international sources. Isolates associated with severe infections exhibited significantly higher toxin productions, tcdB mRNA levels, and sporulation capacities (P < 0.001). Kyoto Encyclopedia of Genes and Genomes analysis showed 10 metabolic pathways were significantly enriched in the mutations among isolates associated with severe CDI (P < 0.05). Gene mutations in glycometabolism, amino acid metabolism and biosynthesis virtually causing instability in protein activity were correlated positively to the transcription of tcdR and negatively to the expression of toxin repressor genes, ccpA and codY. In summary, our study firstly presented genomic insights into genetic characteristics and virulence association of C. difficile ST37 in China. Gene mutations in certain important metabolic pathways are associated with severe symptoms and correlated with higher virulence in C. difficile ST37 isolates.


Pectin supplementation ameliorates intestinal epithelial barrier function damage by modulating intestinal microbiota in lipopolysaccharide-challenged piglets.

  • Xiaobin Wen‎ et al.
  • The Journal of nutritional biochemistry‎
  • 2022‎

During weaning, infants and young animals are susceptible to severe enteric infections, thus inducing intestinal microbiota dysbiosis, intestinal inflammation, and impaired intestinal barrier function. Pectin (PEC), a prebiotic polysaccharide, enhances intestinal health with the potential for a therapeutic effect on intestinal diseases. One 21-d study was conducted to investigate the protective effect of pectin against intestinal injury induced by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS) in a piglet model. A total of 24 piglets (6.77±0.92 kg BW; Duroc × Landrace × Large White; barrows; 21 d of age) were randomly assigned into three groups: control group, LPS-challenged group, and PEC + LPS group. Piglets were administrated with LPS or saline on d14 and d21 of the experiment. All piglets were slaughtered and intestinal samples were collected after 3 h administration on d21. Pectin supplementation ameliorated the LPS-induced inflammation response and damage to the ileal morphology. Meanwhile, pectin also improved intestinal mucin barrier function, increased the mRNA expression of MUC2, and improved intestinal mucus glycosylation. LPS challenge reduced the diversity of intestinal microbiota and enriched the relative abundance of Helicobacter. Pectin restored alpha diversity and improved the structure of the gut microbiota by enriching anti-inflammatory bacteria and short-chain fatty acids (SCFAs)-producing bacteria, and increased the concentrations of acetate. In addition, Spearman rank correlation analysis also revealed the potential relationship between intestinal microbiota and intestinal morphology, intestinal inflammation, and intestinal glycosylation in piglets. Taken together, these results indicate that pectin enhances intestinal integrity and barrier function by altering intestinal microbiota composition and their metabolites, which subsequently alleviates intestinal injury and finally improves the growth performance of piglets.


Gut-Testis Axis: Microbiota Prime Metabolome To Increase Sperm Quality in Young Type 2 Diabetes.

  • Xiaowei Yan‎ et al.
  • Microbiology spectrum‎
  • 2022‎

Young type 2 diabetes (T2D) affects 15% of the population, with a noted increase in cases, and T2D-related male infertility has become a serious issue in recent years. The current study aimed to explore the improvements of alginate oligosaccharide (AOS)-modified gut microbiota on semen quality in T2D. The T2D was established in young mice of 5 weeks of age with a blood glucose level of 21.2 ± 2.2 mmol/L, while blood glucose was 8.7 ± 1.1 mM in control animals. We discovered that fecal microbiota transplantation (FMT) of AOS-improved microbiota (A10-FMT) significantly decreased blood glucose, while FMT of gut microbiota from control animals (Con-FMT) did not. Sperm concentration and motility were decreased in T2D to 10% to 20% of those in the control group, while A10-FMT brought about a recovery of around 5- to 10-fold. A10-FMT significantly increased small intestinal Allobaculum, while it elevated small intestinal and cecal Lactobacillus in some extent, blood butyric acid and derivatives and eicosapentaenoic acid (EPA), and testicular docosahexaenoic acid (DHA), EPA, and testosterone and its derivatives. Furthermore, A10-FMT improved liver functions and systemic antioxidant environments. Most importantly, A10-FMT promoted spermatogenesis through the improvement in the expression of proteins important for spermatogenesis to increase sperm concentration and motility. The underlying mechanisms may be that A10-FMT increased gut-beneficial microbes Lactobacillus and Allobaculum to elevate blood and/or testicular butyric acid, DHA, EPA, and testosterone to promote spermatogenesis and thus to ameliorate sperm concentration and motility. AOS-improved gut microbes could emerge as attractive candidates to treat T2D-diminished semen quality. IMPORTANCE A10-FMT benefits gut microbiota, liver function, and systemic environment via improvement in blood metabolome, consequently to favor the testicular microenvironment to improve spermatogenesis process and to boost T2D-diminished semen quality. We established that AOS-improved gut microbiota may be used to boost T2D-decreased semen quality and metabolic disease-related male subfertility.


Assessment of the Cepheid 3-gene Host Response Fingerstick Blood Test (MTB-HR) on rapid diagnosis of tuberculosis.

  • Xiaocui Wu‎ et al.
  • Emerging microbes & infections‎
  • 2023‎

ABSTRACTThe World Health Organization has identified high-priority target product profiles for new TB diagnostics which include rapid biomarker-based, non-sputum-based diagnostic testing, using an easily accessible sample. The Cepheid 3-gene Host Response Fingerstick Blood Prototype Test (MTB-HR) quantifies relative mRNA levels of a 3-gene signature (GBP5, DUSP3, and KLF2) from a whole-blood sample on the GeneXpert platform. The objective of the present study was to evaluate the performance of the MTB-HR to distinguish between active tuberculosis (ATB), latent Mycobacterium tuberculosis infection (LTBI), other pulmonary diseases, and healthy volunteers at a tertiary care centre. Among 653 participants enrolled in this study, 192 were diagnosed as having ATB, and the remaining 461 were classified as non-ATB, including 137 cases of LTBI, 224 cases of other pulmonary diseases, and 100 healthy volunteers. The corresponding AUCs of the MTB-HR in distinguishing untreated ATB from non-ATB, LTBI, other pulmonary diseases, and healthy volunteers were 0.814 (95% CI, 0.760-0.868, sensitivity 76.1%, specificity 71.6%), 0.739 (95% CI, 0.667-0.812, sensitivity 59.7%, specificity 78.1%), 0.825 (95% CI, 0.770-0.880, sensitivity 82.1%, specificity 65.6%), 0.892 (95% CI, 0.839-0.945, sensitivity 76.1%, specificity 88.0%), respectively. When only samples with TAT of less than 1 h were included, the AUC of the MTB-HR in distinguishing untreated ATB from non-ATB was largest, 0.920 (95% CI, 0.822-1.000, sensitivity 81.3%, specificity 87.7%). In conclusion, the MTB-HR assay shows potential as a rapid, blood-based screening and triage test for ATB, especially for untreated ATB, with the advantage of increased diagnostic yield since blood is more readily available.


High Prevalence of Metallo-β-Lactamase-Producing Enterobacter cloacae From Three Tertiary Hospitals in China.

  • Yimei Cai‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Enterobacter cloacae has recently emerged as one of the most common carbapenem-resistant Enterobacteriaceae. The emergence and spread of metallo-β-lactamase-producing E. cloacae have posed an immediate threat globally. Here, we investigated the molecular characteristics of 84 carbapenem-resistant Enterobacter cloacae (CREL) collected from three tertiary hospitals in China between 2012 and 2016. Species identification and antimicrobial susceptibility testing were performed using a VITEK-2 system. Carbapenems, polymyxins B, and tigecycline were tested by broth microdilution method. The carbapenem in activation method (CIM) and cefoxitin three-dimensional test were used to detect carbapenemase and AmpC β-lactamase, respectively. Isolates were screened for β-lactam resistance genes by PCR, and expression of ompC and ompF was determined by qRT-PCR. Genetic relatedness was performed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST), while selected isolates were subjected to whole-genome sequencing. Among the 84 CREL isolates, 50 (59.5%) were detected as carbapenemase producers. NDM-1 was the dominant carbapenemase (80.0%), followed by IMP-26 (8.0%) and IMP-4 (6.0%). Notably, we identified the first NDM-1 and IMP-1 co-producing E. cloacae, carrying plasmids of several incompatibility (Inc) groups, including IncHI2, IncHI2A, and IncN. Most isolates showed decreased expression of ompC and/or ompF, and contained a broad distribution of ESBLs and AmpC β-lactamases. These findings suggested that different molecular mechanisms, including carbapenemase, ESBL and/or AmpC plus loss of porins, have contributed to carbapenem resistance. The bla NDM-1-harboring plasmids contained highly conserved gene environment around bla NDM-1 (bla NDM-1-ble MBL-trpF-dsbD-cutA1-groES-groEL), which could be associated with the potential dissemination of bla NDM-1. IMP-type MBL was located within a variety of integrons and usually contained various gene cassettes encoding multidrug resistance. These isolates produced 54 different pulsotypes, and were classified into 42 STs by MLST. Nineteen bla NDM-1-positive E. cloacae isolates obtained from Ningxia had the same pulsotype (PFGE type 1), belonging to ST78 within clonal complex 74 (CC74). The plasmid-based replicon typing indicated that IncX3 plasmids mediated the dissemination of bla NDM-1 among these homologous strains. This is the first report on the outbreak of NDM-1-producing E. cloacae ST78 with contribution of IncX3 plasmids in Northwestern China. There's an immediate need to intensify surveillance attentively to prevent and control the further spread of NDM-1 in China.


Angiotensin type 1 receptor modulates macrophage polarization and renal injury in obesity.

  • Li-Jun Ma‎ et al.
  • American journal of physiology. Renal physiology‎
  • 2011‎

The mechanisms for increased risk of chronic kidney disease (CKD) in obesity remain unclear. The renin-angiotensin system is implicated in the pathogenesis of both adiposity and CKD. We investigated whether the angiotensin type 1 (AT(1)) receptor, composed of dominant AT(1a) and less expressed AT(1b) in wild-type (WT) mice, modulates development and progression of kidney injury in a high-fat diet (HFD)-induced obesity model. WT mice had increased body weight, body fat, and insulin levels and decreased adiponectin levels after 24 wk of a high-fat diet. Identically fed AT(1a) knockout (AT1aKO) mice gained weight similarly to WT mice, but had lower body fat and higher plasma cholesterol. Both obese AT1aKO and obese WT mice had increased visceral fat and kidney macrophage infiltration, with more proinflammatory M1 macrophage markers as well as increased mesangial expansion and tubular vacuolization, compared with lean mice. These abnormalities were heightened in the obese AT1aKO mice, with downregulated M2 macrophage markers and increased macrophage AT(1b) receptor. Treatment with an AT(1) receptor blocker, which affects both AT(1a) and AT(1b), abolished renal macrophage infiltration with inhibition of renal M1 and upregulation of M2 macrophage markers in obese WT mice. Our data suggest obesity accelerates kidney injury, linked to augmented inflammation in adipose and kidney tissues and a proinflammatory shift in macrophage and M1/M2 balance.


Simultaneous detection and differentiation of respiratory syncytial virus and other respiratory viral pathogens.

  • Susan E Sefers‎ et al.
  • Methods in molecular biology (Clifton, N.J.)‎
  • 2011‎

Rapid and accurate detection of respiratory syncytial virus (RSV) provides pathogen-specific diagnosis, allows implementation of appropriate infection control measures, and improves patient management. One diagnostic challenge is that respiratory infections, which can be caused by several viral pathogens including RSV, usually present with similar signs and symptoms that are nearly indistinguishable by clinical diagnosis. We have described in the chapter a rapid, high-throughput laboratory technique that can detect a panel of common viral pathogens in one single reaction. With the combination of target-enriched multiplexing PCR amplification and Luminex suspension array identification, 12 common respiratory viruses, including RSV A and B, influenza virus A and B, parainfluenza virus 1, 2, 3, and 4, human metapneumovirus, rhinoviruses, enteroviruses, and SARS coronavirus, are detected and differentiated simultaneously within five hours.


Caenorhabditis Elegans Mutants Predict Regulation of Fatty Acids and Endocannabinoids by the CYP-35A Gene Family.

  • Vuokko Aarnio‎ et al.
  • Frontiers in pharmacology‎
  • 2011‎

Cytochrome P450s (CYPs) are mono-oxygenases that metabolize endogenous compounds, such as fatty acids and lipid signaling molecules, and furthermore have a role in metabolism of xenobiotics. In order to investigate the role of CYP genes in fat metabolism at the molecular level, four Caenorhabditis elegans mutants lacking functional CYP-35A1, CYP-35A2, CYP-35A4, and CYP-35A5 were characterized. Relative amounts of fatty acids, as well as endocannabinoids, which regulate weight gain and accumulation of fats in mammals, were measured while fat contents in worms were visualized using Oil-Red-O staining.


Genetic Diversity of Carbapenem-Resistant Enterobacteriaceae (CRE) Clinical Isolates From a Tertiary Hospital in Eastern China.

  • Minhui Miao‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

The prevalence of carbapenem-resistant Enterobacteriaceae (CRE) is increasing globally, with different molecular mechanisms described. Here we studied the molecular mechanisms of carbapenem resistance, including clonal and plasmid dissemination, of 67 CRE isolates collected between 2012 and 2016 from a tertiary hospital in Eastern China, an CRE endemic region. Species identification and susceptibility testing were performed using the BD Phoenix Automated Microbiology System. Isolates were characterized by PCR (for carbapenemases, ESBLs, AmpC and porin genes), multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and conjugation transfer experiments. Selected bla KPC-2 -harboring plasmids were subjected to next-generation sequencing using the Illumina Miseq platform. Among the 67 CRE isolates, 42 Klebsiella pneumoniae, 10 Serratia marcescens, 6 Enterobacter cloacae, 2 Raoultella ornithinolytica, 2 K. oxytoca, 1 K. aerogenes, and 4 Escherichia coli isolates were identified. Six different carbapenemases were detected, including bla KPC-2 (n = 45), bla KPC-3 (n = 1), bla NDM-1 (n = 6), bla NDM-5 (n = 1), bla IMP-4 (n = 2), and bla VIM-1 (n = 2); bla OXA-48-like genes were not detected. One E. cloacae strain possessed both bla NDM-1 and bla KPC-3, while two E. cloacae isolates harbored bla NDM-1 and bla VIM-1. ESBLs (CTX-M, SHV, and TEM) and/or AmpC (CMY, DHA, and ACT/MIR) genes were also identified in 59 isolates, including 13 strains that lacked carbapenemases. Several insertions or stop codon mutations were found within porin genes of K. pneumoniae, E. coli and S. marcescens isolates, both with and without carbapenemases. The 42 K. pneumoniae isolates belonged to 12 different sequence types (ST), with ST11 being the most common, while the 6 E. cloacae isolates comprised 4 different STs. The 10 S. marcescens all shared the same PFGE pulsotype, suggestive of clonal spread. Complete plasmid sequencing and PCR screening revealed both intra-strain and inter-species spread of a common bla KPC-2-harboring plasmid in our hospital. Taken together, our study revealed extensive genetic diversity among CRE isolates form a single Chinese hospital. CRE isolates circulating in the hospital differ significantly in their species, STs, porin genes, carbapenemase genes, and their plasmid content, highlighting the complex dissemination of CRE in this endemic region.


Using Multiplex Molecular Testing to Determine the Etiology of Acute Gastroenteritis in Children.

  • Maribeth R Nicholson‎ et al.
  • The Journal of pediatrics‎
  • 2016‎

To detect the etiologic agents of acute gastroenteritis (AGE) in children using broad molecular-based techniques, and compare clinical presentations among etiologies.


Selective microRNA-Offset RNA expression in human embryonic stem cells.

  • Suvi Asikainen‎ et al.
  • PloS one‎
  • 2015‎

Small RNA molecules, including microRNAs (miRNAs), play critical roles in regulating pluripotency, proliferation and differentiation of embryonic stem cells. miRNA-offset RNAs (moRNAs) are similar in length to miRNAs, align to miRNA precursor (pre-miRNA) loci and are therefore believed to derive from processing of the pre-miRNA hairpin sequence. Recent next generation sequencing (NGS) studies have reported the presence of moRNAs in human neurons and cancer cells and in several tissues in mouse, including pluripotent stem cells. In order to gain additional knowledge about human moRNAs and their putative development-related expression, we applied NGS of small RNAs in human embryonic stem cells (hESCs) and fibroblasts. We found that certain moRNA isoforms are notably expressed in hESCs from loci coding for stem cell-selective or cancer-related miRNA clusters. In contrast, we observed only sparse moRNAs in fibroblasts. Consistent with earlier findings, most of the observed moRNAs derived from conserved loci and their expression did not appear to correlate with the expression of the adjacent miRNAs. We provide here the first report of moRNAs in hESCs, and their expression profile in comparison to fibroblasts. Moreover, we expand the repertoire of hESC miRNAs. These findings provide an expansion on the known repertoire of small non-coding RNA contents in hESCs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: