2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Pectin supplementation ameliorates intestinal epithelial barrier function damage by modulating intestinal microbiota in lipopolysaccharide-challenged piglets.

The Journal of nutritional biochemistry | 2022

During weaning, infants and young animals are susceptible to severe enteric infections, thus inducing intestinal microbiota dysbiosis, intestinal inflammation, and impaired intestinal barrier function. Pectin (PEC), a prebiotic polysaccharide, enhances intestinal health with the potential for a therapeutic effect on intestinal diseases. One 21-d study was conducted to investigate the protective effect of pectin against intestinal injury induced by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS) in a piglet model. A total of 24 piglets (6.77±0.92 kg BW; Duroc × Landrace × Large White; barrows; 21 d of age) were randomly assigned into three groups: control group, LPS-challenged group, and PEC + LPS group. Piglets were administrated with LPS or saline on d14 and d21 of the experiment. All piglets were slaughtered and intestinal samples were collected after 3 h administration on d21. Pectin supplementation ameliorated the LPS-induced inflammation response and damage to the ileal morphology. Meanwhile, pectin also improved intestinal mucin barrier function, increased the mRNA expression of MUC2, and improved intestinal mucus glycosylation. LPS challenge reduced the diversity of intestinal microbiota and enriched the relative abundance of Helicobacter. Pectin restored alpha diversity and improved the structure of the gut microbiota by enriching anti-inflammatory bacteria and short-chain fatty acids (SCFAs)-producing bacteria, and increased the concentrations of acetate. In addition, Spearman rank correlation analysis also revealed the potential relationship between intestinal microbiota and intestinal morphology, intestinal inflammation, and intestinal glycosylation in piglets. Taken together, these results indicate that pectin enhances intestinal integrity and barrier function by altering intestinal microbiota composition and their metabolites, which subsequently alleviates intestinal injury and finally improves the growth performance of piglets.

Pubmed ID: 35863585 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Proteintech Group (tool)

RRID:SCR_008986

Proteintech Europe Ltd is an ISO 9001:2008 certified company

View all literature mentions