Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 319 papers

Neurofilament light chain level is a weak risk factor for the development of MS.

  • Georgina Arrambide‎ et al.
  • Neurology‎
  • 2016‎

To determine the prognostic value of selected biomarkers in clinically isolated syndromes (CIS) for conversion to multiple sclerosis (MS) and disability accrual.


Gray matter network disruptions and amyloid beta in cognitively normal adults.

  • Betty M Tijms‎ et al.
  • Neurobiology of aging‎
  • 2016‎

Gray matter networks are disrupted in Alzheimer's disease (AD). It is unclear when these disruptions start during the development of AD. Amyloid beta 1-42 (Aβ42) is among the earliest changes in AD. We studied, in cognitively healthy adults, the relationship between Aβ42 levels in cerebrospinal fluid (CSF) and single-subject cortical gray matter network measures. Single-subject gray matter networks were extracted from structural magnetic resonance imaging scans in a sample of cognitively healthy adults (N = 185; age range 39-79, mini-mental state examination >25, N = 12 showed abnormal Aβ42 < 550 pg/mL). Degree, clustering coefficient, and path length were computed at whole brain level and for 90 anatomical areas. Associations between continuous Aβ42 CSF levels and single-subject cortical gray matter network measures were tested. Smoothing splines were used to determine whether a linear or nonlinear relationship gave a better fit to the data. Lower Aβ42 CSF levels were linearly associated at whole brain level with lower connectivity density, and nonlinearly with lower clustering values and higher path length values, which is indicative of a less-efficient network organization. These relationships were specific to medial temporal areas, precuneus, and the middle frontal gyrus (all p < 0.05). These results suggest that mostly within the normal spectrum of amyloid, lower Aβ42 levels can be related to gray matter networks disruptions.


Lower cerebral blood flow is associated with faster cognitive decline in Alzheimer's disease.

  • Marije R Benedictus‎ et al.
  • European radiology‎
  • 2017‎

To determine whether lower cerebral blood flow (CBF) is associated with faster cognitive decline in patients with Alzheimer's disease (AD).


The dissociability of lexical retrieval and morphosyntactic processes for nouns and verbs: A functional and anatomoclinical study.

  • Annalisa Benetello‎ et al.
  • Brain and language‎
  • 2016‎

Nouns and verbs can dissociate following brain damage, at both lexical retrieval and morphosyntactic processing levels. In order to document the range and the neural underpinnings of behavioral dissociations, twelve aphasics with disproportionate difficulty naming objects or actions were asked to apply phonologically identical morphosyntactic transformations to nouns and verbs. Two subjects with poor object naming and 2/10 with poor action naming made no morphosyntactic errors at all. Six of 10 subjects with poor action naming showed disproportionate or no morphosyntactic difficulties for verbs. Morphological errors on nouns and verbs correlated at the group level, but in individual cases a selective impairment of verb morphology was observed. Poor object and action naming with spared morphosyntax were associated with non-overlapping lesions (inferior occipitotemporal and fronto-temporal, respectively). Poor verb morphosyntax was observed with frontal-temporal lesions affecting white matter tracts deep to the insula, possibly disrupting the interaction of nodes in a fronto-temporal network.


Global and regional differences in brain anatomy of young children born small for gestational age.

  • Henrica M A De Bie‎ et al.
  • PloS one‎
  • 2011‎

In children who are born small for gestational age (SGA), an adverse intrauterine environment has led to underdevelopment of both the body and the brain. The delay in body growth is (partially) restored during the first two years in a majority of these children. In addition to a negative influence on these physical parameters, decreased levels of intelligence and cognitive impairments have been described in children born SGA. In this study, we used magnetic resonance imaging to examine brain anatomy in 4- to 7-year-old SGA children with and without complete bodily catch-up growth and compared them to healthy children born appropriate for gestational age. Our findings demonstrate that these children strongly differ on brain organisation when compared with healthy controls relating to both global and regional anatomical differences. Children born SGA displayed reduced cerebral and cerebellar grey and white matter volumes, smaller volumes of subcortical structures and reduced cortical surface area. Regional differences in prefrontal cortical thickness suggest a different development of the cerebral cortex. SGA children with bodily catch-up growth constitute an intermediate between those children without catch-up growth and healthy controls. Therefore, bodily catch-up growth in children born SGA does not implicate full catch-up growth of the brain.


Clinical associations of T2-weighted lesion load and lesion location in small vessel disease: Insights from a large prospective cohort study.

  • Anna Altermatt‎ et al.
  • NeuroImage‎
  • 2019‎

Subcortical T2-weighted (T2w) lesions are very common in older adults and have been associated with dementia. However, little is known about the strategic lesion distribution and how lesion patterns relate to vascular risk factors and cognitive impairment.


Normal Aging Brain Collection Amsterdam (NABCA): A comprehensive collection of postmortem high-field imaging, neuropathological and morphometric datasets of non-neurological controls.

  • Laura E Jonkman‎ et al.
  • NeuroImage. Clinical‎
  • 2019‎

Well-characterized, high-quality brain tissue of non-neurological control subjects is a prerequisite to study the healthy aging brain, and can serve as a control for the study of neurological disorders. The Normal Aging Brain Collection Amsterdam (NABCA) provides a comprehensive collection of post-mortem (ultra-)high-field MRI (3Tesla and 7 Tesla) and neuropathological datasets of non-neurological controls. By providing MRI within the pipeline, NABCA uniquely stimulates translational neurosciences; from molecular and morphometric tissue studies to the clinical setting. We describe our pipeline, including a description of our on-call autopsy team, donor selection, in situ and ex vivo post-mortem MRI protocols, brain dissection and neuropathological diagnosis. A demographic, radiological and pathological overview of five selected cases on all these aspects is provided. Additionally, information is given on data management, data and tissue application procedures, including review by a scientific advisory board, and setting up a material transfer agreement before distribution of tissue. Finally, we focus on future prospects, which includes laying the foundation for a unique platform for neuroanatomical, histopathological and neuro-radiological education, of professionals, students and the general (lay) audience.


Novel imaging phantom for accurate and robust measurement of brain atrophy rates using clinical MRI.

  • Houshang Amiri‎ et al.
  • NeuroImage. Clinical‎
  • 2019‎

Brain volume loss, or atrophy, has been proven to be an important characteristic of neurological diseases such as Alzheimer's disease and multiple sclerosis. To use atrophy rate as a reliable clinical biomarker and to increase statistical power in clinical treatment trials, measurement variability needs to be minimized. Among other sources, systematic differences between different MR scanners are suspected to contribute to this variability. In this study we developed and performed initial validation tests of an MR-compatible phantom and analysis software for robust and reliable evaluation of the brain volume loss. The phantom contained three inflatable models of brain structures, i.e. cerebral hemisphere, putamen, and caudate nucleus. Software to reliably quantify volumes form the phantom images was also developed. To validate the method, the phantom was imaged using 3D T1-weighted protocols at three clinical 3T MR scanners from different vendors. Calculated volume change from MRI was compared with the known applied volume change using ICC and mean absolute difference. As assessed by the ICC, the agreement between our developed software and the applied volume change for different structures ranged from 0.999-1 for hemisphere, 0.976-0.998 for putamen, and 0.985-0.999 for caudate nucleus. The mean absolute differences between measured and applied volume change were 109-332 μL for hemisphere, 2.9-11.9 μL for putamen, and 2.2-10.1 μL for caudate nucleus. This method offers a reliable and robust measurement of volume change using MR images and could potentially be used to standardize clinical measurement of atrophy rates.


Switching from branded to generic glatiramer acetate: 15-month GATE trial extension results.

  • Krzysztof Selmaj‎ et al.
  • Multiple sclerosis (Houndmills, Basingstoke, England)‎
  • 2017‎

Open-label 15-month follow-up of the double-blind, placebo-controlled Glatiramer Acetate clinical Trial to assess Equivalence with Copaxone® (GATE) trial.


Disclosure of amyloid positron emission tomography results to individuals without dementia: a systematic review.

  • Arno de Wilde‎ et al.
  • Alzheimer's research & therapy‎
  • 2018‎

Disclosure of amyloid positron emission tomography (PET) results to individuals without dementia has become standard practice in secondary prevention trials and also increasingly occurs in clinical practice. However, this is controversial given the current lack of understanding of the predictive value of a PET result at the individual level and absence of disease-modifying treatments. In this study, we systematically reviewed the literature on the disclosure of amyloid PET in cognitively normal (CN) individuals and patients with mild cognitive impairment (MCI) in both research and clinical settings.


Preserved antigen-specific immune response in patients with multiple sclerosis responding to IFNβ-therapy.

  • Matthias Mehling‎ et al.
  • PloS one‎
  • 2013‎

Interferon-beta (IFNβ) regulates the expression of a complex set of pro- as well as anti-inflammatory genes. In cohorts of MS patients unstratified for therapeutic response to IFNβ, normal vaccine-specific immune responses have been observed. Data capturing antigen-specific immune responses in cohorts of subjects defined by response to IFNβ-therapy are not available.


Widespread disruption of functional brain organization in early-onset Alzheimer's disease.

  • Sofie M Adriaanse‎ et al.
  • PloS one‎
  • 2014‎

Early-onset Alzheimer's disease (AD) patients present a different clinical profile than late-onset AD patients. This can be partially explained by cortical atrophy, although brain organization might provide more insight. The aim of this study was to examine functional connectivity in early-onset and late-onset AD patients. Resting-state fMRI scans of 20 early-onset (<65 years old), 28 late-onset (≥65 years old) AD patients and 15 "young" (<65 years old) and 31 "old" (≥65 years old) age-matched controls were available. Resting-state network-masks were used to create subject-specific maps. Group differences were examined using a non-parametric permutation test, accounting for gray-matter. Performance on five cognitive domains were used in a correlation analysis with functional connectivity in AD patients. Functional connectivity was not different in any of the RSNs when comparing the two control groups (young vs. old controls), which implies that there is no general effect of aging on functional connectivity. Functional connectivity in early-onset AD was lower in all networks compared to age-matched controls, where late-onset AD showed lower functional connectivity in the default-mode network. Functional connectivity was lower in early-onset compared to late-onset AD in auditory-, sensory-motor, dorsal-visual systems and the default mode network. Across patients, an association of functional connectivity of the default mode network was found with visuoconstruction. Functional connectivity of the right dorsal visual system was associated with attention across patients. In late-onset AD patients alone, higher functional connectivity of the sensory-motor system was associated with poorer memory performance. Functional brain organization was more widely disrupted in early-onset AD when compared to late-onset AD. This could possibly explain different clinical profiles, although more research into the relationship of functional connectivity and cognitive performance is needed.


Cardiac effects of amiselimod compared with fingolimod and placebo: results of a randomised, parallel-group, phase I study in healthy subjects.

  • Tomohiko Harada‎ et al.
  • British journal of clinical pharmacology‎
  • 2017‎

Amiselimod (MT-1303) is a selective sphingosine 1-phosphate 1 (S1P1 ) receptor modulator which is currently being developed for the treatment of various autoimmune diseases. Unlike some other S1P receptor modulators, amiselimod seemed to show a favourable cardiac safety profile in preclinical, phase I and II studies. The aim of the current study was to characterize the cardiac effects of amiselimod by directly comparing it with fingolimod and placebo.


Agreement of MSmetrix with established methods for measuring cross-sectional and longitudinal brain atrophy.

  • Martijn D Steenwijk‎ et al.
  • NeuroImage. Clinical‎
  • 2017‎

Despite the recognized importance of atrophy in multiple sclerosis (MS), methods for its quantification have been mostly restricted to the research domain. Recently, a CE labelled and FDA approved MS-specific atrophy quantification method, MSmetrix, has become commercially available. Here we perform a validation of MSmetrix against established methods in simulated and in vivo MRI data.


Two-year results from a phase 2 extension study of oral amiselimod in relapsing multiple sclerosis.

  • Ludwig Kappos‎ et al.
  • Multiple sclerosis (Houndmills, Basingstoke, England)‎
  • 2018‎

Amiselimod, an oral selective sphingosine-1-phosphate 1 receptor modulator, suppressed disease activity dose-dependently without clinically relevant bradyarrhythmia in a 24-week phase 2, placebo-controlled study in relapsing-remitting multiple sclerosis.


α4-integrin receptor desaturation and disease activity return after natalizumab cessation.

  • Tobias Derfuss‎ et al.
  • Neurology(R) neuroimmunology & neuroinflammation‎
  • 2017‎

To describe the time course of α4-integrin receptor desaturation and disease activity return in patients with relapsing-remitting MS who discontinued natalizumab and to investigate baseline and on-study predictors for the recurrence of disease activity.


Teriflunomide slows BVL in relapsing MS: A reanalysis of the TEMSO MRI data set using SIENA.

  • Ernst-Wilhelm Radue‎ et al.
  • Neurology(R) neuroimmunology & neuroinflammation‎
  • 2017‎

To assess, using structural image evaluation using normalization of atrophy (SIENA), the effect of teriflunomide, a once-daily oral immunomodulator, on brain volume loss (BVL) in patients with relapsing forms of MS enrolled in the phase 3 TEMSO study.


Different patterns of gray matter atrophy in early- and late-onset Alzheimer's disease.

  • Christiane Möller‎ et al.
  • Neurobiology of aging‎
  • 2013‎

We assessed patterns of gray matter atrophy according to-age-at-onset in a large sample of 215 Alzheimer's disease (AD) patients and 129 control subjects with voxel-based morphometry using 3-Tesla 3D T1-weighted magnetic resonance imaging. Local gray matter amounts were compared between late- and early-onset AD patients and older and younger control subjects, taking into account the effect of apolipoprotein E. Additionally, combined effects of age and diagnosis on volumes of hippocampus and precuneus were assessed. Compared with age-matched control subjects, late-onset AD patients exhibited atrophy of the hippocampus, right temporal lobe, and cerebellum, whereas early-onset AD patients showed gray matter atrophy in hippocampus, temporal lobes, precuneus, cingulate gyrus, and inferior frontal cortex. Direct comparisons between late- and early-onset AD patients revealed more pronounced atrophy of precuneus in early-onset AD patients and more severe atrophy in medial temporal lobe in late-onset AD patients. Age and diagnosis independently affected the hippocampus; moreover, the interaction between age and diagnosis showed that precuneus atrophy was most prominent in early-onset AD patients. Our results suggest that patterns of atrophy might vary in the spectrum of AD.


Modeling the cumulative genetic risk for multiple sclerosis from genome-wide association data.

  • Joanne H Wang‎ et al.
  • Genome medicine‎
  • 2011‎

Multiple sclerosis (MS) is the most common cause of chronic neurologic disability beginning in early to middle adult life. Results from recent genome-wide association studies (GWAS) have substantially lengthened the list of disease loci and provide convincing evidence supporting a multifactorial and polygenic model of inheritance. Nevertheless, the knowledge of MS genetics remains incomplete, with many risk alleles still to be revealed.


Cognitive and clinical dysfunction, altered MEG resting-state networks and thalamic atrophy in multiple sclerosis.

  • Prejaas Tewarie‎ et al.
  • PloS one‎
  • 2013‎

The relation between pathological findings and clinical and cognitive decline in Multiple Sclerosis remains unclear. Here, we tested the hypothesis that altered functional connectivity could provide a missing link between structural findings, such as thalamic atrophy and white matter lesion load, and clinical and cognitive dysfunction. Resting-state magnetoencephalography recordings from 21 MS patients and 17 gender- and age matched controls were projected onto atlas-based regions-of-interest using beamforming. Average functional connectivity was computed for each ROI and literature-based resting-state networks using the phase-lag index. Structural measures of whole brain and thalamic atrophy and lesion load were estimated from MRI scans. Global analyses showed lower functional connectivity in the alpha2 band and higher functional connectivity in the beta band in patients with Multiple Sclerosis. Additionally, alpha2 band functional connectivity was lower for the patients in two resting-state networks, namely the default mode network and the visual network. Higher beta band functional connectivity was found in the default mode network and in the temporo-parietal network. Lower alpha2 band functional connectivity in the visual network was related to lower thalamic volumes. Beta band functional connectivity correlated positively with disability scores, most prominently in the default mode network, and correlated negatively with cognitive performance in this network. These findings illustrate the relationship between thalamic atrophy, altered functional connectivity and clinical and cognitive dysfunction in MS, which could serve as a bridge to understand how neurodegeneration is associated with altered functional connectivity and subsequently clinical and cognitive decline.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: