Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Cardiac effects of amiselimod compared with fingolimod and placebo: results of a randomised, parallel-group, phase I study in healthy subjects.

British journal of clinical pharmacology | 2017

Amiselimod (MT-1303) is a selective sphingosine 1-phosphate 1 (S1P1 ) receptor modulator which is currently being developed for the treatment of various autoimmune diseases. Unlike some other S1P receptor modulators, amiselimod seemed to show a favourable cardiac safety profile in preclinical, phase I and II studies. The aim of the current study was to characterize the cardiac effects of amiselimod by directly comparing it with fingolimod and placebo.

Pubmed ID: 27921320 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


IUPHAR/BPS Guide to Pharmacology (tool)

RRID:SCR_013077

Portal and searchable database of pharmacological information. Information is presented at two levels, the initial view or landing pages for each target family provide expert-curated overviews of the key properties and the available selective ligands and tool compounds. For selected targets, more detailed introductory chapters for each family are available along with curated information on the pharmacological, physiological, structural, genetic and pathophysiogical properties of each target.

View all literature mentions