Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 140 papers

Convulsive seizures from experimental focal cortical dysplasia occur independently of cell misplacement.

  • Lawrence S Hsieh‎ et al.
  • Nature communications‎
  • 2016‎

Focal cortical dysplasia (FCD), a local malformation of cortical development, is the most common cause of pharmacoresistant epilepsy associated with life-long neurocognitive impairments. It remains unclear whether neuronal misplacement is required for seizure activity. Here we show that dyslamination and white matter heterotopia are not necessary for seizure generation in a murine model of type II FCDs. These experimental FCDs generated by increasing mTOR activity in layer 2/3 neurons of the medial prefrontal cortex are associated with tonic-clonic seizures and a normal survival rate. Preventing all FCD-related defects, including neuronal misplacement and dysmorphogenesis, with rapamycin treatments from birth eliminates seizures, but seizures recur after rapamycin withdrawal. In addition, bypassing neuronal misplacement and heterotopia using inducible vectors do not prevent seizure occurrence. Collectively, data obtained using our new experimental FCD-associated epilepsy suggest that life-long treatment to reduce neuronal dysmorphogenesis is required to suppress seizures in individuals with FCD.


An epigenetic mechanism mediates developmental nicotine effects on neuronal structure and behavior.

  • Yonwoo Jung‎ et al.
  • Nature neuroscience‎
  • 2016‎

Developmental nicotine exposure causes persistent changes in cortical neuron morphology and in behavior. We used microarray screening to identify master transcriptional or epigenetic regulators mediating these effects of nicotine and discovered increases in Ash2l mRNA, encoding a component of a histone methyltransferase complex. We therefore examined genome-wide changes in trimethylation of histone H3 on Lys4 (H3K4me3), a mark induced by the Ash2l complex associated with increased gene transcription. A large proportion of regulated promoter sites were involved in synapse maintenance. We found that Mef2c interacts with Ash2l and mediates changes in H3K4me3. Knockdown of Ash2l or Mef2c abolished nicotine-mediated alterations of dendritic complexity in vitro and in vivo, and attenuated nicotine-dependent changes in passive avoidance behavior. In contrast, overexpression mimicked nicotine-mediated alterations of neuronal structure and passive avoidance behavior. These studies identify Ash2l as a target induced by nicotinic stimulation that couples developmental nicotine exposure to changes in brain epigenetic marks, neuronal structure and behavior.


Altered functional connectivity in seizure onset zones revealed by fMRI intrinsic connectivity.

  • Hyang Woon Lee‎ et al.
  • Neurology‎
  • 2014‎

The purpose of this study was to investigate functional connectivity (FC) changes in epileptogenic networks in intractable partial epilepsy obtained from resting-state fMRI by using intrinsic connectivity contrast (ICC), a voxel-based network measure of degree that reflects the number of connections to each voxel.


The individual functional connectome is unique and stable over months to years.

  • Corey Horien‎ et al.
  • NeuroImage‎
  • 2019‎

Functional connectomes computed from fMRI provide a means to characterize individual differences in the patterns of BOLD synchronization across regions of the entire brain. Using four resting-state fMRI datasets with a wide range of ages, we show that individual differences of the functional connectome are stable across 3 months to 1-2 years (and even detectable at above-chance levels across 3 years). Medial frontal and frontoparietal networks appear to be both unique and stable, resulting in high ID rates, as did a combination of these two networks. We conduct analyses demonstrating that these results are not driven by head motion. We also show that edges contributing the most to a successful ID tend to connect nodes in the frontal and parietal cortices, while edges contributing the least tend to connect cross-hemispheric homologs. Our results demonstrate that the functional connectome is stable across years and that high ID rates are not an idiosyncratic aspect of a specific dataset, but rather reflect stable individual differences in the functional connectivity of the brain.


Impaired consciousness in patients with absence seizures investigated by functional MRI, EEG, and behavioural measures: a cross-sectional study.

  • Jennifer N Guo‎ et al.
  • The Lancet. Neurology‎
  • 2016‎

The neural underpinnings of impaired consciousness and of the variable severity of behavioural deficits from one absence seizure to the next are not well understood. We aimed to measure functional MRI (fMRI) and electroencephalography (EEG) changes in absence seizures with impaired task performance compared with seizures in which performance was spared.


Functional MRS with J-edited lactate in human motor cortex at 4 T.

  • Yury Koush‎ et al.
  • NeuroImage‎
  • 2019‎

While functional MRI (fMRI) localizes regions of brain activation, functional MRS (fMRS) provides insights into metabolic underpinnings. Previous fMRS studies detected task-induced lactate increase using short echo-time non-edited 1H-MRS protocols, where lactate changes depended on accurate exclusion of overlapping lactate and lipid/macromolecule signals. Because long echo-time J-difference 1H-MRS detection of lactate is less susceptible to this shortcoming, we posited if J-edited fMRS protocol could reliably detect metabolic changes in the human motor cortex during a finger-tapping paradigm in relation to a reliable measure of basal lactate. Our J-edited fMRS protocol at 4T was guided by an fMRI pre-scan to determine the 1H-MRS voxel placement in the motor cortex. Because lactate and β-hydroxybutyrate (BHB) follow similar J-evolution profiles we observed both metabolites in all spectra, but only lactate showed reproducible task-induced modulation by 0.07 mM from a basal value of 0.82 mM. These J-edited fMRS results demonstrate good sensitivity and specificity for task-induced lactate modulation, suggesting that J-edited fMRS studies can be used to investigate the metabolic underpinning of human cognition by measuring lactate dynamics associated with activation and deactivation fMRI paradigms across brain regions at magnetic field lower than 7T.


Impact of Global Mean Normalization on Regional Glucose Metabolism in the Human Brain.

  • Kristian N Mortensen‎ et al.
  • Neural plasticity‎
  • 2018‎

Because the human brain consumes a disproportionate fraction of the resting body's energy, positron emission tomography (PET) measurements of absolute glucose metabolism (CMRglc) can serve as disease biomarkers. Global mean normalization (GMN) of PET data reveals disease-based differences from healthy individuals as fractional changes across regions relative to a global mean. To assess the impact of GMN applied to metabolic data, we compared CMRglc with and without GMN in healthy awake volunteers with eyes closed (i.e., control) against specific physiological/clinical states, including healthy/awake with eyes open, healthy/awake but congenitally blind, healthy/sedated with anesthetics, and patients with disorders of consciousness. Without GMN, global CMRglc alterations compared to control were detected in all conditions except in congenitally blind where regional CMRglc variations were detected in the visual cortex. However, GMN introduced regional and bidirectional CMRglc changes at smaller fractions of the quantitative delocalized changes. While global information was lost with GMN, the quantitative approach (i.e., a validated method for quantitative baseline metabolic activity without GMN) not only preserved global CMRglc alterations induced by opening eyes, sedation, and varying consciousness but also detected regional CMRglc variations in the congenitally blind. These results caution the use of GMN upon PET-measured CMRglc data in health and disease.


Selective deletion of glutamine synthetase in the mouse cerebral cortex induces glial dysfunction and vascular impairment that precede epilepsy and neurodegeneration.

  • Yun Zhou‎ et al.
  • Neurochemistry international‎
  • 2019‎

Glutamate-ammonia ligase (glutamine synthetase; Glul) is enriched in astrocytes and serves as the primary enzyme for ammonia detoxification and glutamate inactivation in the brain. Loss of astroglial Glul is reported in hippocampi of epileptic patients, but the mechanism by which Glul deficiency might cause disease remains elusive. Here we created a novel mouse model by selectively deleting Glul in the hippocampus and neocortex. The Glul deficient mice were born without any apparent malformations and behaved unremarkably until postnatal week three. There were reductions in tissue levels of aspartate, glutamate, glutamine and GABA and in mRNA encoding glutamate receptor subunits GRIA1 and GRIN2A as well as in the glutamate transporter proteins EAAT1 and EAAT2. Adult Glul-deficient mice developed progressive neurodegeneration and spontaneous seizures which increased in frequency with age. Importantly, progressive astrogliosis occurred before neurodegeneration and was first noted in astrocytes along cerebral blood vessels. The responses to CO2-provocation were attenuated at four weeks of age and dilated microvessels were observed histologically in sclerotic areas of cKO. Thus, the abnormal glutamate metabolism observed in this model appeared to cause epilepsy by first inducing gliopathy and disrupting the neurovascular coupling.


Coupled Intrinsic Connectivity Distribution analysis: a method for exploratory connectivity analysis of paired FMRI data.

  • Dustin Scheinost‎ et al.
  • PloS one‎
  • 2014‎

We present a novel voxel-based connectivity approach for paired functional magnetic resonance imaging (fMRI) data collected under two different conditions labeled the Coupled Intrinsic Connectivity Distribution (coupled-ICD). Our proposed method jointly models both conditions to incorporate additional paired information into the connectivity metric. Voxel-based connectivity holds promise as a clinical tool to characterize a wide range of neurological and psychiatric diseases, and monitor their treatment. As such, examining paired connectivity data such as scans acquired pre- and post-intervention is an important application for connectivity methodologically. When presented with data from paired conditions, conventional voxel-based methods analyze each condition separately. However, summarizing each connection separately can misrepresent patterns of changes in connectivity. We show that commonly used methods can underestimate functional changes and subsequently introduce and evaluate our solution to this problem, the coupled-ICD metric, using two studies: 1) healthy controls scanned awake and under anesthesia, and 2) cocaine-dependent subjects and healthy controls scanned while being presented with relaxing or drug-related imagery cues. The coupled-ICD approach detected differences between paired conditions in similar brain regions as the conventional approaches while also revealing additional changes in regions not identified using conventional voxel-based connectivity analyses. Follow-up seed-based analyses on data independent from the voxel-based results also showed connectivity differences between conditions in regions detected by coupled-ICD. This approach of jointly analyzing paired resting-state scans provides a new and important tool with many applications for clinical and basic neuroscience research.


A role of OCRL in clathrin-coated pit dynamics and uncoating revealed by studies of Lowe syndrome cells.

  • Ramiro Nández‎ et al.
  • eLife‎
  • 2014‎

Mutations in the inositol 5-phosphatase OCRL cause Lowe syndrome and Dent's disease. Although OCRL, a direct clathrin interactor, is recruited to late-stage clathrin-coated pits, clinical manifestations have been primarily attributed to intracellular sorting defects. Here we show that OCRL loss in Lowe syndrome patient fibroblasts impacts clathrin-mediated endocytosis and results in an endocytic defect. These cells exhibit an accumulation of clathrin-coated vesicles and an increase in U-shaped clathrin-coated pits, which may result from sequestration of coat components on uncoated vesicles. Endocytic vesicles that fail to lose their coat nucleate the majority of the numerous actin comets present in patient cells. SNX9, an adaptor that couples late-stage endocytic coated pits to actin polymerization and which we found to bind OCRL directly, remains associated with such vesicles. These results indicate that OCRL acts as an uncoating factor and that defects in clathrin-mediated endocytosis likely contribute to pathology in patients with OCRL mutations.


Functional MRI and neural responses in a rat model of Alzheimer's disease.

  • Basavaraju G Sanganahalli‎ et al.
  • NeuroImage‎
  • 2013‎

Based on the hypothesis that brain plaques and tangles can affect cortical function in Alzheimer's disease (AD), we investigated functional responses in an AD rat model (called the Samaritan Alzheimer's rat achieved by ventricular infusion of amyloid peptide) and age-matched healthy control. High-field functional magnetic resonance imaging (fMRI) and extracellular neural activity measurements were applied to characterize sensory-evoked responses. Electrical stimulation of the forepaw led to BOLD and neural responses in the contralateral somatosensory cortex and thalamus. In AD brain we noted much smaller BOLD activation patterns in the somatosensory cortex (i.e., about 50% less activated voxels compared to normal brain). While magnitudes of BOLD and neural responses in the cerebral cortex were markedly attenuated in AD rats compared to normal rats (by about 50%), the dynamic coupling between the BOLD and neural responses in the cerebral cortex, as assessed by transfer function analysis, remained unaltered between the groups. However thalamic BOLD and neural responses were unaltered in AD brain compared to controls. Thus cortical responses in the AD model were indeed diminished compared to controls, but the thalamic responses in the AD and control rats were quite similar. Therefore these results suggest that Alzheimer's disease may affect cortical function more than subcortical function, which may have implications for interpreting altered human brain functional responses in fMRI studies of Alzheimer's disease.


Mitochondrial functional state impacts spontaneous neocortical activity and resting state FMRI.

  • Basavaraju G Sanganahalli‎ et al.
  • PloS one‎
  • 2013‎

Mitochondrial Ca(2+) uptake, central to neural metabolism and function, is diminished in aging whereas enhanced after acute/sub-acute traumatic brain injury. To develop relevant translational models for these neuropathologies, we determined the impact of perturbed mitochondrial Ca(2+) uptake capacities on intrinsic brain activity using clinically relevant markers. From a multi-compartment estimate of probable baseline Ca(2+) ranges in the brain, we hypothesized that reduced or enhanced mitochondrial Ca(2+) uptake capacity would decrease or increase spontaneous neuronal activity respectively. As resting state fMRI-BOLD fluctuations and stimulus-evoked BOLD responses have similar physiological origins [1] and stimulus-evoked neuronal and hemodynamic responses are modulated by mitochondrial Ca(2+) uptake capacity [2], [3] respectively, we tested our hypothesis by measuring hemodynamic fluctuations and spontaneous neuronal activities during normal and altered mitochondrial functional states. Mitochondrial Ca(2+) uptake capacity was perturbed by pharmacologically inhibiting or enhancing the mitochondrial Ca(2+) uniporter (mCU) activity. Neuronal electrical activity and cerebral blood flow (CBF) fluctuations were measured simultaneously and integrated with fMRI-BOLD fluctuations at 11.7T. mCU inhibition reduced spontaneous neuronal activity and the resting state functional connectivity (RSFC), whereas mCU enhancement increased spontaneous neuronal activity but reduced RSFC. We conclude that increased or decreased mitochondrial Ca(2+) uptake capacities lead to diminished resting state modes of brain functional connectivity.


S phase entry of neural progenitor cells correlates with increased blood flow in the young subventricular zone.

  • Benjamin Lacar‎ et al.
  • PloS one‎
  • 2012‎

The postnatal subventricular zone (SVZ) contains proliferating neural progenitor cells in close proximity to blood vessels. Insults and drug treatments acutely stimulate cell proliferation in the SVZ, which was assessed by labeling cells entering S phase. Although G1-to-S progression is metabolically demanding on a minute-to-hour time scale, it remains unknown whether increased SVZ cell proliferation is accompanied by a local hemodynamic response. This neurovascular coupling provides energy substrates to active neuronal assemblies. Transcardial dye perfusion revealed the presence of capillaries throughout the SVZ that constrict upon applications of the thromboxane A(2) receptor agonist U-46119 in acute brain slice preparations. We then monitored in vivo blood flow using laser Doppler flowmetry via a microprobe located either in the SVZ or a mature network. U-46119 injections into the lateral ventricle decreased blood flow in the SVZ and the striatum, which are near the ventricle. A 1-hour ventricular injection of epidermal and basic fibroblast growth factor (EGF and bFGF) significantly increased the percentage of Sox2 transcription factor-positive cells in S phase 1.5 hours post-injection. This increase was accompanied by a sustained rise in blood flow in the SVZ but not in the striatum. Direct growth factor injections into the cortex did not alter local blood flow, ruling out direct effects on capillaries. These findings suggest that an acute increase in the number of G1-to-S cycling SVZ cells is accompanied by neurometabolic-vascular coupling, which may provide energy and nutrient for cell cycle progression.


Functional connectivity and alterations in baseline brain state in humans.

  • Roberto Martuzzi‎ et al.
  • NeuroImage‎
  • 2010‎

This work examines the influence of changes in baseline activity on the intrinsic functional connectivity fMRI (fc-fMRI) in humans. Baseline brain activity was altered by inducing anesthesia (sevoflurane end-tidal concentration 1%) in human volunteers and fc-fMRI maps between the pre-anesthetized and anesthetized conditions were compared across different brain networks. We particularly focused on low-level sensory areas (primary somatosensory, visual, and auditory cortices), the thalamus, and pain (insula), memory (hippocampus) circuits, and the default mode network (DMN), the latter three to examine higher-order brain regions. The results indicate that, while fc-fMRI patterns did not significantly differ (p<0.005; 20-voxel cluster threshold) in sensory cortex and in the DMN between the pre- and anesthetized conditions, fc-fMRI in high-order cognitive regions (i.e. memory and pain circuits) was significantly altered by anesthesia. These findings provide further evidence that fc-fMRI reflects intrinsic brain properties, while also demonstrating that 0.5 MAC sevoflurane anesthesia preferentially modulates higher-order connections.


Influence of SLC6A3 and COMT variation on neural activation during response inhibition.

  • Eliza Congdon‎ et al.
  • Biological psychology‎
  • 2009‎

There is evidence concerning the neural and genetic correlates of inhibitory control, but there have been limited attempts to combine this information. This study tested the hypothesis that two dopaminergic polymorphisms, SLC6A3 and COMT, influence neural activation during response inhibition. Healthy adults were genotyped for these polymorphisms and performed a measure of response inhibition while undergoing functional magnetic resonance imaging (fMRI). Results support the role of key frontostriatal regions underlying response inhibition. Furthermore, results support a significant influence of SLC6A3 and COMT variants on neural activity during inhibition, with greater activation during inhibition in carriers of the SLC6A3 9-allele or the COMT met-allele as compared to carriers of the SLC6A3 10/10 genotype or the COMT val/val genotype. These results add to a growing literature suggesting that inhibitory control is sensitive to variation in dopamine function, and suggest that this variation may be detectable at the level of individuals' genotypes.


Aspm knockout ferret reveals an evolutionary mechanism governing cerebral cortical size.

  • Matthew B Johnson‎ et al.
  • Nature‎
  • 2018‎

The human cerebral cortex is distinguished by its large size and abundant gyrification, or folding. However, the evolutionary mechanisms that drive cortical size and structure are unknown. Although genes that are essential for cortical developmental expansion have been identified from the genetics of human primary microcephaly (a disorder associated with reduced brain size and intellectual disability) 1 , studies of these genes in mice, which have a smooth cortex that is one thousand times smaller than the cortex of humans, have provided limited insight. Mutations in abnormal spindle-like microcephaly-associated (ASPM), the most common recessive microcephaly gene, reduce cortical volume by at least 50% in humans2-4, but have little effect on the brains of mice5-9; this probably reflects evolutionarily divergent functions of ASPM10,11. Here we used genome editing to create a germline knockout of Aspm in the ferret (Mustela putorius furo), a species with a larger, gyrified cortex and greater neural progenitor cell diversity12-14 than mice, and closer protein sequence homology to the human ASPM protein. Aspm knockout ferrets exhibit severe microcephaly (25-40% decreases in brain weight), reflecting reduced cortical surface area without significant change in cortical thickness, as has been found in human patients3,4, suggesting that loss of 'cortical units' has occurred. The cortex of fetal Aspm knockout ferrets displays a very large premature displacement of ventricular radial glial cells to the outer subventricular zone, where many resemble outer radial glia, a subtype of neural progenitor cells that are essentially absent in mice and have been implicated in cerebral cortical expansion in primates12-16. These data suggest an evolutionary mechanism by which ASPM regulates cortical expansion by controlling the affinity of ventricular radial glial cells for the ventricular surface, thus modulating the ratio of ventricular radial glial cells, the most undifferentiated cell type, to outer radial glia, a more differentiated progenitor.


Resting-state functional connectivity predicts neuroticism and extraversion in novel individuals.

  • Wei-Ting Hsu‎ et al.
  • Social cognitive and affective neuroscience‎
  • 2018‎

The personality dimensions of neuroticism and extraversion are strongly associated with emotional experience and affective disorders. Previous studies reported functional magnetic resonance imaging (fMRI) activity correlates of these traits, but no study has used brain-based measures to predict them. Here, using a fully cross-validated approach, we predict novel individuals' neuroticism and extraversion from functional connectivity (FC) data observed as they simply rested during fMRI scanning. We applied a data-driven technique, connectome-based predictive modeling (CPM), to resting-state FC data and neuroticism and extraversion scores (self-reported NEO Five Factor Inventory) from 114 participants of the Nathan Kline Institute Rockland sample. After dividing the whole brain into 268 nodes using a predefined functional atlas, we defined each individual's FC matrix as the set of correlations between the activity timecourses of every pair of nodes. CPM identified networks consisting of functional connections correlated with neuroticism and extraversion scores, and used strength in these networks to predict a left-out individual's scores. CPM predicted neuroticism and extraversion in novel individuals, demonstrating that patterns in resting-state FC reveal trait-level measures of personality. CPM also revealed predictive networks that exhibit some anatomical patterns consistent with past studies and potential new brain areas of interest in personality.


APOE genotype-dependent pharmacogenetic responses to rapamycin for preventing Alzheimer's disease.

  • Ai-Ling Lin‎ et al.
  • Neurobiology of disease‎
  • 2020‎

The ε4 allele of Apolipoprotein (APOE4) is the strongest genetic risk factor for Alzheimer's disease (AD), the most common form of dementia. Cognitively normal APOE4 carriers have developed amyloid beta (Aβ) plaques and cerebrovascular, metabolic and structural deficits decades before showing the cognitive impairment. Interventions that can inhibit Aβ retention and restore the brain functions to normal would be critical to prevent AD for the asymptomatic APOE4 carriers. A major goal of the study was to identify the potential usefulness of rapamycin (Rapa), a pharmacological intervention for extending longevity, for preventing AD in the mice that express human APOE4 gene and overexpress Aβ (the E4FAD mice). Another goal of the study was to identify the potential pharmacogenetic differences in response to rapamycin between the E4FAD and E3FAD mice, the mice with human APOE ε3 allele. We used multi-modal MRI to measure in vivo cerebral blood flow (CBF), neurotransmitter levels, white matter integrity, water content, cerebrovascular reactivity (CVR) and somatosensory response; used behavioral assessments to determine cognitive function; used biochemistry assays to determine Aβ retention and blood-brain barrier (BBB) functions; and used metabolomics to identify brain metabolic changes. We found that in the E4FAD mice, rapamycin normalized bodyweight, restored CBF (especially in female), BBB activity for Aβ transport, neurotransmitter levels, neuronal integrity and free fatty acid level, and reduced Aβ retention, which were not observe in the E3FAD-Rapa mice. In contrast, E3FAD-Rapa mice had lower CVR responses, lower anxiety and reduced glycolysis in the brain, which were not seen in the E4FAD-Rapa mice. Further, rapamycin appeared to normalize lipid-associated metabolism in the E4FAD mice, while slowed overall glucose-associated metabolism in the E3FAD mice. Finally, rapamycin enhanced overall water content, water diffusion in white matter, and spatial memory in both E3FAD and E4FAD mice, but did not impact the somatosensory responses under hindpaw stimulation. Our findings indicated that rapamycin was able to restore brain functions and reduce AD risk for young, asymptomatic E4FAD mice, and there were pharmacogenetic differences between the E3FAD and E4FAD mice. As the multi-modal MRI methods used in the study are readily to be used in humans and rapamycin is FDA-approved, our results may pave a way for future clinical testing of the pharmacogenetic responses in humans with different APOE alleles, and potentially using rapamycin to prevent AD for asymptomatic APOE4 carriers.


Cluster failure or power failure? Evaluating sensitivity in cluster-level inference.

  • Stephanie Noble‎ et al.
  • NeuroImage‎
  • 2020‎

Pioneering work in human neuroscience has relied on the ability to map brain function using task-based fMRI, but the empirical validity of these inferential methods is still being characterized. A recent landmark study by Eklund and colleagues showed that popular multiple comparison corrections based on cluster extent suffer from unexpectedly low specificity (i.e., high false positive rate). Yet that study's focus on specificity, while important, is incomplete. The validity of a method depends also on its sensitivity (i.e., true positive rate or power), yet the sensitivity of cluster correction remains poorly understood. Here, we assessed the sensitivity of gold-standard nonparametric cluster correction by resampling real data from five tasks in the Human Connectome Project and comparing results with those from the full "ground truth" datasets (n ​= ​480-493). Critically, we found that sensitivity after correction is lower than may be practical for many fMRI applications. In particular, sensitivity to medium-sized effects (|Cohen's d| ​= ​0.5) was less than 20% across tasks on average, about three times smaller than without any correction. Furthermore, cluster extent correction exhibited a spatial bias in sensitivity that was independent of effect size. In comparison, correction based on the Threshold-Free Cluster Enhancement (TFCE) statistic approximately doubled sensitivity across tasks but increased spatial bias. These results suggest that we have, until now, only measured the tip of the iceberg in the activation-mapping literature due to our goal of limiting the familywise error rate through cluster extent-based inference. There is a need to revise our practices to improve sensitivity; we therefore conclude with a list of modern strategies to boost sensitivity while maintaining respectable specificity in future investigations.


Imaging effective oxygen diffusivity in the human brain with multiparametric magnetic resonance imaging.

  • Jan Kufer‎ et al.
  • Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism‎
  • 2022‎

Cerebrovascular diseases can impair blood circulation and oxygen extraction from the blood. The effective oxygen diffusivity (EOD) of the capillary bed is a potential biomarker of microvascular function that has gained increasing interest, both for clinical diagnosis and for elucidating oxygen transport mechanisms. Models of capillary oxygen transport link EOD to measurable oxygen extraction fraction (OEF) and cerebral blood flow (CBF). In this work, we confirm that two well established mathematical models of oxygen transport yield nearly equivalent EOD maps. Furthermore, we propose an easy-to-implement and clinically applicable multiparametric magnetic resonance imaging (MRI) protocol for quantitative EOD mapping. Our approach is based on imaging OEF and CBF with multiparametric quantitative blood oxygenation level dependent (mq-BOLD) MRI and pseudo-continuous arterial spin labeling (pCASL), respectively. We evaluated the imaging protocol by comparing MRI-EOD maps of 12 young healthy volunteers to PET data from a published study in different individuals. Our results show comparably good correlation between MRI- and PET-derived cortical EOD, OEF and CBF. Importantly, absolute values of MRI and PET showed high accordance for all three parameters. In conclusion, our data indicates feasibility of the proposed MRI protocol for EOD mapping, rendering the method promising for future clinical evaluation of patients with cerebrovascular diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: