Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 78 papers

Discovery of Novel Plasmodium falciparum Pre-Erythrocytic Antigens for Vaccine Development.

  • Joao C Aguiar‎ et al.
  • PloS one‎
  • 2015‎

Nearly 100% protection against malaria infection can be achieved in humans by immunization with P. falciparum radiation-attenuated sporozoites (RAS). Although it is thought that protection is mediated by T cell and antibody responses, only a few of the many pre-erythrocytic (sporozoite and liver stage) antigens that are targeted by these responses have been identified.


Human pluripotent stem cell-derived alveolar epithelial cells are alternatives for in vitro pulmotoxicity assessment.

  • Hye-Ryeon Heo‎ et al.
  • Scientific reports‎
  • 2019‎

Human pluripotent stem cell (hPSC)-derived alveolar epithelial cells (AECs) provide new opportunities for understanding lung development and the treatment of pulmonary diseases. However, toxicity assessments using hPSC-AECs have not been undertaken. In this study, we generated functional AECs from hPSCs and evaluated their inflammatory and apoptotic responses to cadmium (Cd) exposure (1, 5, and 10 μM) for 24 h compared with the human bronchial epithelial cell line (BEAS-2B) and primary AECs as controls. Our data showed that Cd (10 μM) treatment induced substantial inflammatory responses and apoptosis in BEAS-2B cells, but not in both hPSC-AECs and primary AECs. Interestingly, conditioned medium from AEC cultures significantly alleviated apoptotic and inflammatory responses to Cd exposure in BEAS-2B cells. Using cytokine arrays, several potential factors secreted from hPSC-AECs and primary AECs were detected and may be involved in reducing Cd-induced cytotoxicity. We also observed higher expression of surfactant proteins B and C in both hPSC-AECs and primary AECs, which may contribute to protection against Cd-induced cytotoxicity. These results suggested that hPSC-AECs phenotypically and functionally resemble primary AECs and could be more biologically relevant alternatives for evaluating the pathological contribution of confirmed or potential pulmotoxic materials included in smoking and microdust.


Characterization of Caveola-Vesicle Complexes (CVCs) Protein, PHIST/CVC-8195 in Plasmodium vivax.

  • Bo Wang‎ et al.
  • The Korean journal of parasitology‎
  • 2016‎

Plasmodium vivax produces numerous caveola-vesicle complex (CVC) structures beneath the membrane of infected erythrocytes. Recently, a member helical interspersed subtelomeric (PHIST) superfamily protein, PcyPHIST/CVC-8195, was identified as CVCs-associated protein in Plasmodium cynomolgi and essential for survival of this parasite. Very little information has been documented to date about PHIST/CVC-8195 protein in P. vivax. In this study, the recombinant PvPHIST/CVC-8195 N and C termini were expressed, and immunoreactivity was assessed using confirmed vivax malaria patients sera by protein microarray. The subcellular localization of PvPHIST/CVC-8195 N and C termini in blood stage parasites was also determined. The antigenicity of recombinant PvPHIST/CVC-8195 N and C terminal proteins were analyzed by using serum samples from the Republic of Korea. The results showed that immunoreactivities to these proteins had 61% and 43% sensitivity and 96.9% and 93.8% specificity, respectively. The N terminal of PvPHIST/CVC-8195 which contains transmembrane domain and export motif (PEXEL; RxLxE/Q/D) produced CVCs location throughout the erythrocytic-stage parasites. However, no fluorescence was detected with antibodies against C terminal fragment of PvPHIST/CVC-8195. These results suggest that the PvPHIST/CVC-8195 is localized on the CVCs and may be immunogenic in natural infection of P. vivax.


Cadmium-induced ER stress and inflammation are mediated through C/EBP-DDIT3 signaling in human bronchial epithelial cells.

  • Jeeyoung Kim‎ et al.
  • Experimental & molecular medicine‎
  • 2017‎

Cadmium (Cd), a major component of cigarette smoke, disrupts the normal functions of airway cells and can lead to the development of various pulmonary diseases such as chronic obstructive pulmonary disease (COPD). However, the molecular mechanisms involved in Cd-induced pulmonary diseases are poorly understood. Here, we identified a cluster of genes that are altered in response to Cd exposure in human bronchial epithelial cells (BEAS-2B) and demonstrated that Cd-induced ER stress and inflammation are mediated via CCAAT-enhancer-binding proteins (C/EBP)-DNA-damaged-inducible transcript 3 (DDIT3) signaling in BEAS-2B cells. Cd treatment led to marked upregulation and downregulation of genes associated with the cell cycle, apoptosis, oxidative stress and inflammation as well as various signal transduction pathways. Gene set enrichment analysis revealed that Cd treatment stimulated the C/EBP signaling pathway and induced transcriptional activation of its downstream target genes, including DDIT3. Suppression of DDIT3 expression using specific small interfering RNA effectively alleviated Cd-induced ER stress and inflammatory responses in both BEAS-2B and normal primary normal human bronchial epithelial cells. Taken together, these data suggest that C/EBP signaling may have a pivotal role in the early induction of ER stress and inflammatory responses by Cd exposure and could be a molecular target for Cd-induced pulmonary disease.


Development of Monoclonal Antibodies for Diagnosis of Plasmodium vivax.

  • Nguyen Thi Phuong Linh‎ et al.
  • The Korean journal of parasitology‎
  • 2017‎

Plasmodium lactate dehydrogenase (pLDH) is a strong target antigen for the determination of infection with Plasmodium species specifically. However, a more effective antibody is needed because of the low sensitivity of the current antibody in many immunological diagnostic assays. In this study, recombinant Plasmodium vivax LDH (PvLDH) was experimentally constructed and expressed as a native antigen to develop an effective P. vivax-specific monoclonal antibody (mAb). Two mAbs (2CF5 and 1G10) were tested using ELISA and immunofluorescence assays (IFA), as both demonstrated reactivity against pLDH antigen. Of the 2 antibodies, 2CF5 was not able to detect P. falciparum, suggesting that it might possess P. vivax-specificity. The detection limit for a pair of 2 mAbs-linked sandwich ELISA was 31.3 ng/ml of the recombinant antigen. The P. vivax-specific performance of mAbs-linked ELISA was confirmed by in vitro-cultured P. falciparum and P. vivax-infected patient blood samples. In conclusion, the 2 new antibodies possessed the potential to detect P. vivax and will be useful in immunoassay.


An Erythrocyte Membrane-Associated Antigen, PvTRAg-26 of Plasmodium vivax: A Study of Its Antigenicity and Immunogenicity.

  • Liping Fan‎ et al.
  • Frontiers in public health‎
  • 2020‎

Background:Plasmodium tryptophan-rich (TR) proteins have been proposed as potential vaccine candidate antigens. Among them, P. vivax tryptophan-rich antigens (PvTR-Ags), which have positionally conserved tryptophan residues in a TR domain, are highly antigenic in humans. Several of these antigens, including PvTRAg-26, have exhibited erythrocyte-binding activities. Methods: Subclasses of IgG antibodies against PvTRAg-26 were detected by enzyme-linked immunosorbent assay in 35 P. vivax infected patients and mice immunized with the recombinant antigen to characterize its antigenicity and immunogenicity. Moreover, the antigen-specific immune responses and Th1/Th2-type cytokine patterns of splenocytes from the immunized animals were determined in vitro. The subcellular localization of PvTRAg-26 in ring-stage parasites was also detected by indirect immunofluorescence assay. Results: The IgG1 and IgG3 levels in P. vivax-infected patients were significantly higher than those in uninfected individuals. In the PvTRAg-26-immunized mice, elevated levels of antigen-specific IgG antibodies were observed, dominated by the IgG1 subclass, and Th1-type cytokines were remarkably increased compared with Th2-type cytokines. Additionally, the subcellular location of the PvTRAg-26 protein was closely associated with the caveola-vesicle complex on the infected-erythrocyte membrane in the early ring stage of P. vivax. Conclusions: PvTRAg-26, a P. vivax TR antigen, with high antigenicity and immunogenicity, induces Th1-cytokine response and increases production of IgG1 antibodies. This immune profiling study provided a substantial evidence that PvTRAg-26 may be a potential candidate for P. vivax vaccine development.


Evaluation of antibody responses to the early transcribed membrane protein family in Plasmodium vivax.

  • Seong-Kyun Lee‎ et al.
  • Parasites & vectors‎
  • 2019‎

Malaria parasites form intracellular membranes that separate the parasite from the internal space of erythrocytes, and membrane proteins from the parasites are exported to the host via the membrane. In our previous study, Plasmodium vivax early transcribed membrane protein (PvETRAMP) 11.2, an intracellular membrane protein that is highly expressed in blood-stage parasites, was characterized as a highly immunogenic protein in P. vivax malaria patients. However, the other PvETRAMP family proteins have not yet been investigated. In this study, PvETRAMPs were expressed and evaluated to determine their immunological profiles.


Diesel Particulate Matter 2.5 Induces Epithelial-to-Mesenchymal Transition and Upregulation of SARS-CoV-2 Receptor during Human Pluripotent Stem Cell-Derived Alveolar Organoid Development.

  • Jung-Hyun Kim‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

Growing evidence links prenatal exposure to particulate matter (PM2.5) with reduced lung function and incidence of pulmonary diseases in infancy and childhood. However, the underlying biological mechanisms of how prenatal PM2.5 exposure affects the lungs are incompletely understood, which explains the lack of an ideal in vitro lung development model. Human pluripotent stem cells (hPSCs) have been successfully employed for in vitro developmental toxicity evaluations due to their unique ability to differentiate into any type of cell in the body. In this study, we investigated the developmental toxicity of diesel fine PM (dPM2.5) exposure during hPSC-derived alveolar epithelial cell (AEC) differentiation and three-dimensional (3D) multicellular alveolar organoid (AO) development. We found that dPM2.5 (50 and 100 μg/mL) treatment disturbed the AEC differentiation, accompanied by upregulation of nicotinamide adenine dinucleotide phosphate oxidases and inflammation. Exposure to dPM2.5 also promoted epithelial-to-mesenchymal transition during AEC and AO development via activation of extracellular signal-regulated kinase signaling, while dPM2.5 had no effect on surfactant protein C expression in hPSC-derived AECs. Notably, we provided evidence, for the first time, that angiotensin-converting enzyme 2, a receptor to mediate the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) entry into target cells, and the cofactor transmembrane protease serine 2 were significantly upregulated in both hPSC-AECs and AOs treated with dPM2.5. In conclusion, we demonstrated the potential alveolar development toxicity and the increase of SARS-Cov-2 susceptibility of PM2.5. Our findings suggest that an hPSC-based 2D and 3D alveolar induction system could be a useful in vitro platform for evaluating the adverse effects of environmental toxins and for virus research.


The acquisition of long-lived memory B cell responses to merozoite surface protein-8 in individuals with Plasmodium vivax infection.

  • Piyawan Kochayoo‎ et al.
  • Malaria journal‎
  • 2019‎

The ability of a malaria antigen to induce effective, long-lasting immune responses is important for the development of a protective malaria vaccine. Plasmodium vivax merozoite surface protein-8 (PvMSP8) has been shown to be immunogenic in natural P. vivax infections and produces both cell-mediated and antibody-mediated immunity. Thus, PvMSP8 has been proposed as a vaccine candidate following fusion with other merozoite antigens in blood stage vaccine design. Here, the long-term responses of antibodies and memory B cells (MBCs) specific to PvMSP8 in individuals were monitored in a longitudinal cohort study.


Inhibition by the atypical antipsychotic risperidone of voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells.

  • Jin Ryeol An‎ et al.
  • European journal of pharmacology‎
  • 2020‎

We evaluated the inhibitory effects of the atypical antipsychotic drug risperidone on voltage-dependent K+ (Kv) channels in rabbit coronary arterial smooth muscle cells. Risperidone suppressed Kv currents in reversible and concentration-dependent manners with an apparent half-maximal effective concentration (IC50 value) of 5.54 ± 0.66 μM and a slope factor of 1.22 ± 0.07. The inactivation of Kv currents was significantly accelerated by risperidone. The rate constants of association and dissociation for risperidone were 0.25 ± 0.01 μM-1s-1 and 1.36 ± 0.14 s-1, respectively. Application of risperidone shifted the steady-state activation curve in the positive direction and the inactivation curve in the negative direction, suggesting that the risperidone-induced inhibition of Kv channels was mediated by effects on the voltage sensors of the channels. Application of train pulses at 1 and 2 Hz led to a progressive increase in the blockage of Kv currents by risperidone. In addition, the recovery time constants from inactivation were extended in the presence of risperidone, indicating that risperidone inhibited Kv channels in a use (state)-dependent manner. Pretreatment with the Kv1.5 subtype inhibitor reduced the inhibitory effects of risperidone on Kv channels. However, pretreatment with a Kv2.1 or Kv7.X subtype inhibitor did not affect the inhibitory effects of risperidone. Risperidone induced vasoconstriction and membrane depolarization. Based on these results, we conclude that risperidone inhibits Kv channels in a concentration-, time-, and state-dependent manners. Our results should be taken into consideration when using risperidone to study the kinetics of K+ channels in vascular smooth muscle.


Surveillance on the Vivax Malaria in Endemic Areas in the Republic of Korea Based on Molecular and Serological Analyses.

  • Seong-Kyun Lee‎ et al.
  • The Korean journal of parasitology‎
  • 2020‎

Plasmodium vivax reemerged in 1993. It has been sustained for more than 25 years and become one of the important indigenous parasitic diseases in northern and western parts of the Republic of Korea near the demilitarized zone. In particular, relapse is a significant concern for the control of malaria, as short- and long-term incubation periods vary among those infected in Korea. In this study, the prevalence of asymptomatic carriers was examined among residents of high endemic areas of vivax malaria during nonseasonal transmission of mosquitoes. Blood samples from 3 endemic regions in northwestern Korea were evaluated by microscopic examination, rapid diagnostic testing, and nested PCR to identify asymptomatic patients carrying malaria parasites in the community. However, no positive malaria case among residents of endemic areas was detected. Additionally, serological analysis was carried out to measure antibodies against 3 antigenic recombinant proteins of P. vivax, merozoite surface protein 1-19, circumsporozoite surface protein-VK210, and liver-stage antigen (PvLSA-N), by the protein array method. Interestingly, seropositivity of sera between previous exposure and samples without exposure to malaria was significantly higher using the PvLSA-N antigen than the other antigens, suggesting that PvLSA-N can be used as a serological marker to analyze the degree of exposure for malaria transmission in endemic areas. This indicates a very low asymptomatic carrier prevalence during the nonmalaria season in the endemic areas of Korea.


WKYMVm ameliorates acute lung injury via neutrophil antimicrobial peptide derived STAT1/IRF1 pathway.

  • Hanbyeol Lee‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

Formyl peptide receptors (FPRs) are mainly expressed on leucocytes and sense microbe-associated molecular pattern (MAMP) molecules, thereby regulating leukocyte chemotaxis and activation. The formyl peptide receptor 2 (FPR2) selective agonist WKYMVm (Trp-Lys-Met-Val-D-Met) has shown potent pro-angiogenic, anti-inflammatory, and anti-apoptotic properties. In this study, we investigated whether WKYMVm exhibits bactericidal activity during neutrophil accumulation in acute lung injury (ALI) in mice and determined its cellular signaling pathways in HL-60 neutrophil-like cells. A daily intraperitoneal treatment of ALI mice with WKYMVm (2.5- and 5 mg/kg/d) daily over four days decreased the levels of proinflammatory cytokines TNF-α, IL-6, and IL-1β, while it increased the MPO and NO release by differentiated HL-60 neutrophil-like cells. The IRF1 level and STAT1 phosphorylation at S727 were increased in the lungs of mice with ALI treated with WKYMVm. Lung histology induced by ALI was unaffected by treatment with WKYMVm. In vitro, WKYMVm increased MPO, NO, and SOD activity, as well as IRF1 and STAT1 phosphorylation at Ser727. Taken together, our data suggest therapeutic potential of WKYMVm, via FPR2-dependent regulation of STAT1/IRF1, in ALI.


Geographical distribution and genetic diversity of Plasmodium vivax reticulocyte binding protein 1a correlates with patient antigenicity.

  • Ji-Hoon Park‎ et al.
  • PLoS neglected tropical diseases‎
  • 2022‎

Plasmodium vivax is the most widespread cause of human malaria. Recent reports of drug resistant vivax malaria and the challenge of eradicating the dormant liver forms increase the importance of vaccine development against this relapsing disease. P. vivax reticulocyte binding protein 1a (PvRBP1a) is a potential vaccine candidate, which is involved in red cell tropism, a crucial step in the merozoite invasion of host reticulocytes. As part of the initial evaluation of the PvRBP1a vaccine candidate, we investigated its genetic diversity and antigenicity using geographically diverse clinical isolates. We analysed pvrbp1a genetic polymorphisms using 202 vivax clinical isolates from six countries. Pvrbp1a was separated into six regions based on specific domain features, sequence conserved/polymorphic regions, and the reticulocyte binding like (RBL) domains. In the fragmented gene sequence analysis, PvRBP1a region II (RII) and RIII (head and tail structure homolog, 152-625 aa.) showed extensive polymorphism caused by random point mutations. The haplotype network of these polymorphic regions was classified into three clusters that converged to independent populations. Antigenicity screening was performed using recombinant proteins PvRBP1a-N (157-560 aa.) and PvRBP1a-C (606-962 aa.), which contained head and tail structure region and sequence conserved region, respectively. Sensitivity against PvRBP1a-N (46.7%) was higher than PvRBP1a-C (17.8%). PvRBP1a-N was reported as a reticulocyte binding domain and this study identified a linear epitope with moderate antigenicity, thus an attractive domain for merozoite invasion-blocking vaccine development. However, our study highlights that a global PvRBP1a-based vaccine design needs to overcome several difficulties due to three distinct genotypes and low antigenicity levels.


Prevalence of pvmrp1 Polymorphisms and Its Contribution to Antimalarial Response.

  • Yi Yin‎ et al.
  • Microorganisms‎
  • 2022‎

As more sporadic cases of chloroquine resistance occur (CQR) in Plasmodium vivax (P. vivax) malaria, molecular markers have become an important tool to monitor the introduction and spread of drug resistance. P. vivax multidrug resistance-associated protein 1 (PvMRP1), as one of the members of the ATP-binding cassette (ABC) transporters, may modulate this phenotype. In this study, we investigated the gene mutations and copy number variations (CNVs) in the pvmrp1 in 102 P. vivax isolates from China, the Republic of Korea (ROK), Myanmar, Papua New Guinea (PNG), Pakistan, the Democratic People’s Republic of Korea (PRK), and Cambodia. And we also obtained 72 available global pvmrp1 sequences deposited in the PlasmoDB database to investigate the genetic diversity, haplotype diversity, natural selection, and population structure of pvmrp1. In total, 29 single nucleotide polymorphisms reflected in 23 non-synonymous, five synonymous mutations and one gene deletion were identified, and CNVs were found in 2.9% of the isolates. Combined with the antimalarial drug susceptibility observed in the previous in vitro assays, except the prevalence of S354N between the two CQ sensitivity categories revealed a significant difference, no genetic mutations or CNVs associated with drug sensitivity were found. The genetic polymorphism analysis of 166 isolates worldwide found that the overall nucleotide diversity (π) of pvmrp1 was 0.0011, with 46 haplotypes identified (Hd = 0.9290). The ratio of non-synonymous to synonymous mutations (dn/ds = 0.5536) and the neutrality tests statistic Fu and Li’s D* test (Fu and Li’s D* = −3.9871, p < 0.02) suggests that pvmrp1 had evolved under a purifying selection. Due to geographical differences, genetic differentiation levels of pvmrp1 in different regions were different to some extent. Overall, this study provides a new idea for finding CQR molecular monitoring of P. vivax and provides more sequences of pvmrp1 in Asia for subsequent research. However, further validation is still needed through laboratory and epidemiological field studies of P. vivax samples from more regions.


Reduced receptor for advanced glycation end products is associated with α-SMA expression in patients with idiopathic pulmonary fibrosis and mice.

  • Hyosin Baek‎ et al.
  • Laboratory animal research‎
  • 2021‎

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease. Despite alveolar epithelial cells is crucial role in lung, its contribution and the associated biomarker remain unknown in the pathogenesis of IPF. Recently, environmental factors including stone dust, silica and cigarette smoking were found as risk factors involved in IPF. Receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin super family of cell surface receptors. It has been shown that interaction between RAGE and its ligands on immune cells mediates cellular migration and regulation of pro-inflammation. RAGE is highly expressed in the lung, in particular, alveolar epithelial cells. Therefore, we determined whether RAGE expression is associated with fibrosis-associated genes in patients with IPF and mice.


Mechanisms underlying the vasodilatory effects of canagliflozin in the rabbit thoracic aorta: Involvement of the SERCA pump and Kv channels.

  • Mi Seon Seo‎ et al.
  • Life sciences‎
  • 2021‎

Canagliflozin is an anti-diabetic agent and sodium glucose co-transporter-2 inhibitor. Despite numerous clinical trials demonstrating its beneficial effects on blood pressure, the cellular mechanisms underlying the effects of canagliflozin on vascular reactivity have yet to be clarified. We investigated the vasodilatory effect of canagliflozin on aortic rings isolated from rabbits.


Plasmodium vivax merozoite-specific thrombospondin-related anonymous protein (PvMTRAP) interacts with human CD36, suggesting a novel ligand-receptor interaction for reticulocyte invasion.

  • Thau Sy Nguyen‎ et al.
  • Parasites & vectors‎
  • 2023‎

The Plasmodium vivax merozoite restrictively invades immature erythrocytes, suggesting that its ligand(s) might interact with corresponding receptor(s) that are selectively abundant on reticulocytes to complete the invasion. Finding the ligand‒receptor interaction involved in P. vivax invasion is critical to vivax malaria management; nevertheless, it remains to be unraveled.


Identification and characterization of Pv50, a novel Plasmodium vivax merozoite surface protein.

  • Yang Cheng‎ et al.
  • Parasites & vectors‎
  • 2019‎

Plasmodium vivax contains approximately 5400 coding genes, more than 40% of which code for hypothetical proteins that have not been functionally characterized. In a previous preliminary screening using pooled serum samples, numerous hypothetical proteins were selected from among those that were highly transcribed in the schizont-stage of parasites, and highly antigenic P. vivax candidates including hypothetical proteins were identified. However, their immunological and functional activities in P. vivax remain unclear. From these candidates, we investigated a P. vivax 50-kDa protein (Pv50, PVX_087140) containing a highly conserved signal peptide that shows high transcription levels in blood-stage parasites.


Insulin prevents pulmonary vascular leakage by inhibiting transglutaminase 2 in diabetic mice.

  • Hye-Yoon Jeon‎ et al.
  • Life sciences‎
  • 2019‎

Insulin is a central peptide hormone required for carbohydrate metabolism; however, its role in diabetes-associated pulmonary disease is unknown. Here, we investigated the preventative effect of insulin against hyperglycemia-induced pulmonary vascular leakage and its molecular mechanism of action in the lungs of diabetic mice.


Growth arrest and forced differentiation of human primary glioblastoma multiforme by a novel small molecule.

  • Tae-Wook Kang‎ et al.
  • Scientific reports‎
  • 2014‎

Glioblastoma multiforme is the most common malignant brain tumor in adults, with an average survival of less than one year due to its resistance to therapy. Recent studies reported that GBM initiates from CD133-expressing cancer stem cells (CSC). However, the efficacy of CSC targeting is limited. A newly developed approach in cancer treatment is the forced differentiation of cancer cells. Here, we show that the treatment of the novel small molecule, CG500354, into CD133-expressing human primary GBM cells induces growth arrest by cell cycle regulators, p53, p21, p27 and phase-specific cyclins, and neural differentiation, as confirmed by neural progenitor/precursor markers, nestin, GFAP and Tuj1. When GBM-derived cells caused the tumors in NOD/SCID mice, CG500354 induced GBM-derived cells differentiation into Tuj1 and GFAP expressing cells. We next demonstrated that CG500354 plays a tumor-suppressive role via cAMP/CREB signaling pathway. CG500354 increases not only the extracellular cAMP level but also the protein level of PKA and CREB. Additionally, both mimetic substances, Forskolin and Rolipram, revealed comparable results with CG500354. Our findings indicate that induction of growth arrest and neural differentiation via cAMP/CREB signaling pathway by CG500354 treatment suggests the novel targeting of PDE4D in the development of new drugs for brain tumor therapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: