Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Diagnostic and therapeutic applications of genomic medicine in progressive, late-onset, nonsyndromic sensorineural hearing loss.

  • Joaquin E Jimenez‎ et al.
  • Gene‎
  • 2020‎

The progressive, late-onset, nonsyndromic, sensorineural hearing loss (PNSHL) is the most common cause of sensory impairment globally, with presbycusis affecting greater than a third of individuals over the age of 65. The etiology underlying PNSHL include presbycusis, noise-induced hearing loss, drug ototoxicity, and delayed-onset autosomal dominant hearing loss (AD PNSHL). The objective of this article is to discuss the potential diagnostic and therapeutic applications of genomic medicine in PNSHL. Genomic factors contribute greatly to PNSHL. The heritability of presbycusis ranges from 25 to 75%. Current therapies for PNSHL range from sound amplification to cochlear implantation (CI). PNSHL is an excellent candidate for genomic medicine approaches as it is common, has well-described pathophysiology, has a wide time window for treatment, and is amenable to local gene therapy by currently utilized procedural approaches. AD PNSHL is especially suited to genomic medicine approaches that can disrupt the expression of an aberrant protein product. Gene therapy is emerging as a potential therapeutic strategy for the treatment of PNSHL. Viral gene delivery approaches have demonstrated promising results in human clinical trials for two inherited causes of blindness and are being used for PNSHL in animal models and a human trial. Non-viral gene therapy approaches are useful in situations where a transient biologic effect is needed or for delivery of genome editing reagents (such as CRISPR/Cas9) into the inner ear. Many gene therapy modalities that have proven efficacious in animal trials have potential to delay or prevent PNSHL in humans. The development of new treatment modalities for PNSHL will lead to improved quality of life of many affected individuals and their families.


Characterisation of Nav1.7 functional expression in rat dorsal root ganglia neurons by using an electrical field stimulation assay.

  • Antoine Fouillet‎ et al.
  • Molecular pain‎
  • 2017‎

Background The Nav1.7 subtype of voltage-gated sodium channels is specifically expressed in sensory and sympathetic ganglia neurons where it plays an important role in the generation and transmission of information related to pain sensation. Human loss or gain-of-function mutations in the gene encoding Nav1.7 channels (SCN9A) are associated with either absence of pain, as reported for congenital insensitivity to pain, or with exacerbation of pain, as reported for primary erythromelalgia and paroxysmal extreme pain disorder. Based on this important human genetic evidence, numerous drug discovery efforts are ongoing in search for Nav1.7 blockers as a novel therapeutic strategy to treat pain conditions. Results We are reporting here a novel approach to study Nav1.7 function in cultured rat sensory neurons. We used live cell imaging combined with electrical field stimulation to evoke and record action potential-driven calcium transients in the neurons. We have shown that the tarantula venom peptide Protoxin-II, a known Nav1.7 subtype selective blocker, inhibited electrical field stimulation-evoked calcium responses in dorsal root ganglia neurons with an IC50 of 72 nM, while it had no activity in embryonic hippocampal neurons. The results obtained in the live cell imaging assay were supported by patch-clamp studies as well as by quantitative PCR and Western blotting experiments that confirmed the presence of Nav1.7 mRNA and protein in dorsal root ganglia but not in embryonic hippocampal neurons. Conclusions The findings presented here point to a selective effect of Protoxin-II in sensory neurons and helped to validate a new method for investigating and comparing Nav1.7 pharmacology in sensory versus central nervous system neurons. This will help in the characterisation of the selectivity of novel Nav1.7 modulators using native ion channels and will provide the basis for the development of higher throughput models for enabling pain-relevant phenotypic screening.


Stem Cells and Gene Therapy in Progressive Hearing Loss: the State of the Art.

  • Aida Nourbakhsh‎ et al.
  • Journal of the Association for Research in Otolaryngology : JARO‎
  • 2021‎

Progressive non-syndromic sensorineural hearing loss (PNSHL) is the most common cause of sensory impairment, affecting more than a third of individuals over the age of 65. PNSHL includes noise-induced hearing loss (NIHL) and inherited forms of deafness, among which is delayed-onset autosomal dominant hearing loss (AD PNSHL). PNSHL is a prime candidate for genetic therapies due to the fact that PNSHL has been studied extensively, and there is a potentially wide window between identification of the disorder and the onset of hearing loss. Several gene therapy strategies exist that show potential for targeting PNSHL, including viral and non-viral approaches, and gene editing versus gene-modulating approaches. To fully explore the potential of these therapy strategies, a faithful in vitro model of the human inner ear is needed. Such models may come from induced pluripotent stem cells (iPSCs). The development of new treatment modalities by combining iPSC modeling with novel and innovative gene therapy approaches will pave the way for future applications leading to improved quality of life for many affected individuals and their families.


11C-LY2428703, a positron emission tomographic radioligand for the metabotropic glutamate receptor 1, is unsuitable for imaging in monkey and human brains.

  • Paolo Zanotti-Fregonara‎ et al.
  • EJNMMI research‎
  • 2013‎

A recent study from our laboratory demonstrated that 11C-LY2428703, a new positron emission tomographic radioligand for metabotropic glutamate receptor 1 (mGluR1), has promising in vitro properties and excellent in vivo performance for imaging rat brain. The present study evaluated 11C-LY2428703 for imaging mGluR1 in monkey and human brains.


Recent advancements in understanding the role of epigenetics in the auditory system.

  • Rahul Mittal‎ et al.
  • Gene‎
  • 2020‎

Sensorineural deafness in mammals is most commonly caused by damage to inner ear sensory epithelia, or hair cells, and can be attributed to genetic and environmental causes. After undergoing trauma, many non-mammalian organisms, including reptiles, birds, and zebrafish, are capable of regenerating damaged hair cells. Mammals, however, are not capable of regenerating damaged inner ear sensory epithelia, so that hair cell damage is permanent and can lead to hearing loss. The field of epigenetics, which is the study of various phenotypic changes caused by modification of genetic expression rather than alteration of DNA sequence, has seen numerous developments in uncovering biological mechanisms of gene expression and creating various medical treatments. However, there is a lack of information on the precise contribution of epigenetic modifications in the auditory system, specifically regarding their correlation with development of inner ear (cochlea) and consequent hearing impairment. Current studies have suggested that epigenetic modifications influence differentiation, development, and protection of auditory hair cells in cochlea, and can lead to hair cell degeneration. The objective of this article is to review the existing literature and discuss the advancements made in understanding epigenetic modifications of inner ear sensory epithelial cells. The analysis of the emerging epigenetic mechanisms related to inner ear sensory epithelial cells development, differentiation, protection, and regeneration will pave the way to develop novel therapeutic strategies for hearing loss.


Antitussive effects of NaV 1.7 blockade in Guinea pigs.

  • Li Yu‎ et al.
  • European journal of pharmacology‎
  • 2021‎

Our previous studies implicated the voltage-gated sodium channel subtype NaV 1.7 in the transmission of action potentials by the vagal afferent nerves regulating cough and thus identified this channel as a rational therapeutic target for antitussive therapy. But it is presently unclear whether a systemically administered small molecule inhibitor of NaV 1.7 conductance can achieve therapeutic benefit in the absence of side effects on cardiovascular function, gastrointestinal motility or respiration. To this end, we have evaluated the antitussive effects of the NaV 1.7 selective blocker Compound 801 administered systemically in awake guinea pigs or administered topically in anesthetized guinea pigs. We also evaluated the antitussive effects of ambroxol, a low affinity NaV blocker modestly selective for tetrodotoxin resistant NaV subtypes. Both Compound 801 and ambroxol dose-dependently inhibited action potential conduction in guinea pig vagus nerves (assessed by compound potential), with ambroxol nearly 100-fold less potent than the NaV 1.7 selective Compound 801 in this and other NaV 1.7-dependent guinea pig and human tissue-based assays. Both drugs also inhibited citric acid evoked coughing in awake or anesthetized guinea pigs, with potencies supportive of an NaV 1.7-dependent mechanism. Notably, however, the antitussive effects of systemically administered Compound 801 were accompanied by hypotension and respiratory depression. Given the antitussive effects of topically administered Compound 801, we speculate that the likely insurmountable side effects on blood pressure and respiratory drive associated with systemic dosing make topical formulations a viable and perhaps unavoidable therapeutic strategy for targeting NaV 1.7 in cough.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: