Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 58 papers

Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis.

  • Vijay Ramaswamy‎ et al.
  • Journal of clinical oncology : official journal of the American Society of Clinical Oncology‎
  • 2016‎

Posterior fossa ependymoma comprises two distinct molecular variants termed EPN_PFA and EPN_PFB that have a distinct biology and natural history. The therapeutic value of cytoreductive surgery and radiation therapy for posterior fossa ependymoma after accounting for molecular subgroup is not known.


DNA methylation-based classification of central nervous system tumours.

  • David Capper‎ et al.
  • Nature‎
  • 2018‎

Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.


Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis.

  • Vijay Ramaswamy‎ et al.
  • The Lancet. Oncology‎
  • 2013‎

Recurrent medulloblastoma is a therapeutic challenge because it is almost always fatal. Studies have confirmed that medulloblastoma consists of at least four distinct subgroups. We sought to delineate subgroup-specific differences in medulloblastoma recurrence patterns.


Knock down of HIF-1alpha in glioma cells reduces migration in vitro and invasion in vivo and impairs their ability to form tumor spheres.

  • Olga Méndez‎ et al.
  • Molecular cancer‎
  • 2010‎

Glioblastoma (GBM) is the most common and malignant primary intracranial human neoplasm. GBMs are characterized by the presence of extensive areas of necrosis and hypoxia. Hypoxia and its master regulator, hypoxia inducible factor 1 (HIF-1) play a key role in glioma invasion.


Stimulation of the toll-like receptor 3 promotes metabolic reprogramming in head and neck carcinoma cells.

  • Mathieu Veyrat‎ et al.
  • Oncotarget‎
  • 2016‎

In this study, a possible link between the innate immune recognition receptor TLR3 and metabolic reprogramming in Head and Neck carcinoma (HNC) cells was investigated. The effects of TLR3 stimulation/knock-down were assessed under several culture conditions in 4 HNC cell-lines by cell growth assays, targeted metabolomics, and glycolysis assays based on time-resolved analysis of proton release (Seahorse analyzer). The stimulation of TLR3 by its synthetic agonist Poly(A:U) resulted in a faster growth of HNC cells under low foetal calf serum conditions. Targeted analysis of glucose metabolism pathways demonstrated a tendency towards a shift from tricarboxylic acid cycle (Krebs cycle) to glycolysis and anabolic reactions in cells treated with Poly(A:U). Glycolysis assays confirmed that TLR3 stimulation enhanced the capacity of malignant cells to switch from oxidative phosphorylation to extra-mitochondrial glycolysis. We found evidence that HIF-1α is involved in this process: addition of the TLR3 agonist resulted in a higher cell concentration of the HIF-1α protein, even in normoxia, whereas knocking-down TLR3 resulted in a lower concentration, even in hypoxia. Finally, we assessed TLR3 expression by immunohistochemistry in a series of 7 HNSCC specimens and found that TLR3 was detected at higher levels in tumors displaying a hypoxic staining pattern. Overall, our results demonstrate that TLR3 stimulation induces the Warburg effect in HNC cells in vitro, and suggest that TLR3 may play a role in tumor adaptation to hypoxia.


Methylation Profiling of Medulloblastoma in a Clinical Setting Permits Sub-classification and Reveals New Outcome Predictions.

  • Musa Alharbi‎ et al.
  • Frontiers in neurology‎
  • 2020‎

Medulloblastoma (MB) is the most common childhood malignant brain tumor and is a leading cause of cancer-related death in children. DNA methylation profiling has rapidly advanced our understanding of MB pathogenesis at the molecular level, but assessments in Saudi Arabian (SA)-MB cases are sparse. MBs can be sub-grouped according to methylation patterns from FPPE samples into Wingless (WNT-MB), Sonic Hedgehog (SHH-MB), Group 3 (G3), and Group 4 (G4) tumors. The WNT-MB and SHH-MB subgroups are characterized by gain-of function mutations that activate oncogenic cell signaling, whilst G3/G4 tumors show recurrent chromosomal alterations. Given that each subgroup has distinct clinical outcomes, the ability to subgroup SA-FPPE samples holds significant prognostic and therapeutic value. Here, we performed the first assessment of MB-DNA methylation patterns in an SA cohort using archival biopsy material (FPPE n = 49). Of the 41 materials available for methylation assessments, 39 could be classified into the major DNA methylation subgroups (SHH, WNT, G3, and G4). Furthermore, methylation analysis was able to reclassify tumors that could not be sub-grouped through next-generation sequencing, highlighting its superior accuracy for MB molecular classifications. Independent assessments demonstrated known clinical relationships of the subgroups, exemplified by the high survival rates observed for WNT tumors. Surprisingly, the G4 subgroup did not conform to previously identified phenotypes, with a high prevalence in females, high metastatic rates, and a large number of tumor-associated deaths. Taking our results together, we demonstrate that DNA methylation profiling enables the robust sub-classification of four disease sub-groups in archival FFPE biopsy material from SA-MB patients. Moreover, we show that the incorporation of DNA methylation biomarkers can significantly improve current disease-risk stratification schemes, particularly concerning the identification of aggressive G4 tumors. These findings have important implications for future clinical disease management in MB cases across the Arab world.


DNA Methylation Profiling Identifies Subgroups of Lung Adenocarcinoma with Distinct Immune Cell Composition, DNA Methylation Age, and Clinical Outcome.

  • Kayla Guidry‎ et al.
  • Clinical cancer research : an official journal of the American Association for Cancer Research‎
  • 2022‎

Lung adenocarcinoma (LUAD) is a clinically heterogeneous disease, which is highlighted by the unpredictable recurrence in low-stage tumors and highly variable responses observed in patients treated with immunotherapies, which cannot be explained by mutational profiles. DNA methylation-based classification and understanding of microenviromental heterogeneity may allow stratification into clinically relevant molecular subtypes of LUADs.


Sarcoma classification by DNA methylation profiling.

  • Christian Koelsche‎ et al.
  • Nature communications‎
  • 2021‎

Sarcomas are malignant soft tissue and bone tumours affecting adults, adolescents and children. They represent a morphologically heterogeneous class of tumours and some entities lack defining histopathological features. Therefore, the diagnosis of sarcomas is burdened with a high inter-observer variability and misclassification rate. Here, we demonstrate classification of soft tissue and bone tumours using a machine learning classifier algorithm based on array-generated DNA methylation data. This sarcoma classifier is trained using a dataset of 1077 methylation profiles from comprehensively pre-characterized cases comprising 62 tumour methylation classes constituting a broad range of soft tissue and bone sarcoma subtypes across the entire age spectrum. The performance is validated in a cohort of 428 sarcomatous tumours, of which 322 cases were classified by the sarcoma classifier. Our results demonstrate the potential of the DNA methylation-based sarcoma classification for research and future diagnostic applications.


Phase 0 Clinical Trial of Everolimus in Patients with Vestibular Schwannoma or Meningioma.

  • Matthias A Karajannis‎ et al.
  • Molecular cancer therapeutics‎
  • 2021‎

Inhibition of mTORC1 signaling has been shown to diminish growth of meningiomas and schwannomas in preclinical studies, and clinical data suggest that everolimus, an orally administered mTORC1 inhibitor, may slow tumor progression in a subset of patients with neurofibromatosis type 2 (NF2) with vestibular schwannoma. To assess the pharmacokinetics, pharmacodynamics, and potential mechanisms of treatment resistance, we performed a presurgical (phase 0) clinical trial of everolimus in patients undergoing elective surgery for vestibular schwannoma or meningiomas. Eligible patients with meningioma or vestibular schwannoma requiring tumor resection enrolled on study received everolimus 10 mg daily for 10 days immediately prior to surgery. Everolimus blood levels were determined immediately before and after surgery. Tumor samples were collected intraoperatively. Ten patients completed protocol therapy. Median pre- and postoperative blood levels of everolimus were found to be in a high therapeutic range (17.4 ng/mL and 9.4 ng/mL, respectively). Median tumor tissue drug concentration determined by mass spectrometry was 24.3 pg/mg (range, 9.2-169.2). We observed only partial inhibition of phospho-S6 in the treated tumors, indicating incomplete target inhibition compared with control tissues from untreated patients (P = 0.025). Everolimus led to incomplete inhibition of mTORC1 and downstream signaling. These data may explain the limited antitumor effect of everolimus observed in clinical studies for patients with NF2 and will inform the design of future preclinical and clinical studies targeting mTORC1 in meningiomas and schwannomas.


A pilot study of genomic-guided induction therapy followed by immunotherapy with difluoromethylornithine maintenance for high-risk neuroblastoma.

  • Jacqueline M Kraveka‎ et al.
  • Cancer reports (Hoboken, N.J.)‎
  • 2022‎

Survival for patients with high-risk neuroblastoma (HRNB) remains poor despite aggressive multimodal therapies.


PATZ1 fusions define a novel molecularly distinct neuroepithelial tumor entity with a broad histological spectrum.

  • Karam T Alhalabi‎ et al.
  • Acta neuropathologica‎
  • 2021‎

Large-scale molecular profiling studies in recent years have shown that central nervous system (CNS) tumors display a much greater heterogeneity in terms of molecularly distinct entities, cellular origins and genetic drivers than anticipated from histological assessment. DNA methylation profiling has emerged as a useful tool for robust tumor classification, providing new insights into these heterogeneous molecular classes. This is particularly true for rare CNS tumors with a broad morphological spectrum, which are not possible to assign as separate entities based on histological similarity alone. Here, we describe a molecularly distinct subset of predominantly pediatric CNS neoplasms (n = 60) that harbor PATZ1 fusions. The original histological diagnoses of these tumors covered a wide spectrum of tumor types and malignancy grades. While the single most common diagnosis was glioblastoma (GBM), clinical data of the PATZ1-fused tumors showed a better prognosis than typical GBM, despite frequent relapses. RNA sequencing revealed recurrent MN1:PATZ1 or EWSR1:PATZ1 fusions related to (often extensive) copy number variations on chromosome 22, where PATZ1 and the two fusion partners are located. These fusions have individually been reported in a number of glial/glioneuronal tumors, as well as extracranial sarcomas. We show here that they are more common than previously acknowledged, and together define a biologically distinct CNS tumor type with high expression of neural development markers such as PAX2, GATA2 and IGF2. Drug screening performed on the MN1:PATZ1 fusion-bearing KS-1 brain tumor cell line revealed preliminary candidates for further study. In summary, PATZ1 fusions define a molecular class of histologically polyphenotypic neuroepithelial tumors, which show an intermediate prognosis under current treatment regimens.


Neuropathological Applications of Microscopy with Ultraviolet Surface Excitation (MUSE): A Concordance Study of Human Primary and Metastatic Brain Tumors.

  • Mirna Lechpammer‎ et al.
  • Brain sciences‎
  • 2024‎

Whereas traditional histology and light microscopy require multiple steps of formalin fixation, paraffin embedding, and sectioning to generate images for pathologic diagnosis, Microscopy using Ultraviolet Surface Excitation (MUSE) operates through UV excitation on the cut surface of tissue, generating images of high resolution without the need to fix or section tissue and allowing for potential use for downstream molecular tests. Here, we present the first study of the use and suitability of MUSE microscopy for neuropathological samples. MUSE images were generated from surgical biopsy samples of primary and metastatic brain tumor biopsy samples (n = 27), and blinded assessments of diagnoses, tumor grades, and cellular features were compared to corresponding hematoxylin and eosin (H&E) images. A set of MUSE-treated samples subsequently underwent exome and targeted sequencing, and quality metrics were compared to those from fresh frozen specimens. Diagnostic accuracy was relatively high, and DNA and RNA integrity appeared to be preserved for this cohort. This suggests that MUSE may be a reliable method of generating high-quality diagnostic-grade histologic images for neuropathology on a rapid and sample-sparing basis and for subsequent molecular analysis of DNA and RNA.


ERG is a novel and reliable marker for endothelial cells in central nervous system tumors.

  • Matthew A Haber‎ et al.
  • Clinical neuropathology‎
  • 2015‎

ETS-related gene (ERG) is a transcription factor that has been linked to angiogenesis. Very little research has been done to assess ERG expression in central nervous system (CNS) tumors. We evaluated 57 CNS tumors, including glioblastomas (GBMs) and hemangioblastomas (HBs), as well as two arteriovenous malformations and four samples of normal brain tissue with immunohistochemistry using a specific ERG rabbit monoclonal antibody. In addition, immunostains for CD31, CD34, and α-smooth muscle actin (α-SMA) were performed on all samples. CD31 demonstrated variable and sometimes weak immunoreactivity for endothelial cells. Furthermore, in 1 case of a GBM, CD34 stained not only endothelial cells, but also tumor cells. In contrast, we observed that ERG was only expressed in the nuclei of endothelial cells, for example, in the hyperplastic vascular complexes that comprise the glomeruloid microvascular proliferation seen in GBMs. Conversely, α-SMA immunoreactivity was identified in the abluminal cells of these hyperplastic vessels. Quantitative evaluation with automated methodology and custom Matlab 2008b software was used to calculate percent staining of ERG in each case. We observed significantly higher quantitative expression of ERG in HBs than in other CNS tumors. Our results show that ERG is a novel, reliable, and specific marker for endothelial cells within CNS tumors that can be used to better study the process of neovascularization.


Fine Mapping and Characterization of Candidate Genes that Control Resistance to Cercospora sojina K. Hara in Two Soybean Germplasm Accessions.

  • Anh-Tung Pham‎ et al.
  • PloS one‎
  • 2015‎

Frogeye leaf spot (FLS), caused by the fungus Cercospora sojina K. Hara, may cause a significant yield loss to soybean growers in regions with a warm and humid climate. Two soybean accessions, PI 594891 and PI 594774, were identified to carry a high level of resistance similar to that conditioned by the Rcs3 gene in 'Davis'. Previously, we reported that the resistance to FLS in these two plant introductions (PIs) was controlled by a novel gene (s) on chromosome 13 that is different from Rcs3. To fine-map the novel FLS resistance gene(s) in these two PIs, F2: 3 seeds from the crosses between PI 594891 and PI 594774, and the FLS susceptible genotype 'Blackhawk' were genotyped with SNP markers that were designed based on the SoySNP50k iSelect BeadChip data to identify recombinant events and locate candidate genes. Analysis of lines possessing key recombination events helped narrow down the FLS-resistance genomic region in PI 594891 from 3.3 Mb to a 72.6 kb region with five annotated genes. The resistance gene in PI 594774 was fine-mapped into a 540 kb region that encompasses the 72.6 kb region found in PI 594891. Sequencing five candidate genes in PI 594891 identified three genes that have several mutations in the promoter, intron, 5', and 3' UTR regions. qPCR analysis showed a difference in expression levels of these genes in both lines compared to Blackhawk in the presence of C. sojina. Based on phenotype, genotype and haplotype analysis results, these two soybean accessions might carry different resistance alleles of the same gene or two different gene(s). The identified SNPs were used to develop Kompetitive Allele Specific PCR (KASP) assays to detect the resistance alleles on chromosome 13 from the two PIs for marker-assisted selection.


Selective lentiviral gene delivery to CD133-expressing human glioblastoma stem cells.

  • N Sumru Bayin‎ et al.
  • PloS one‎
  • 2014‎

Glioblastoma multiforme (GBM) is a deadly primary brain malignancy. Glioblastoma stem cells (GSC), which have the ability to self-renew and differentiate into tumor lineages, are believed to cause tumor recurrence due to their resistance to current therapies. A subset of GSCs is marked by cell surface expression of CD133, a glycosylated pentaspan transmembrane protein. The study of CD133-expressing GSCs has been limited by the relative paucity of genetic tools that specifically target them. Here, we present CD133-LV, a lentiviral vector presenting a single chain antibody against CD133 on its envelope, as a vehicle for the selective transduction of CD133-expressing GSCs. We show that CD133-LV selectively transduces CD133+ human GSCs in dose-dependent manner and that transduced cells maintain their stem-like properties. The transduction efficiency of CD133-LV is reduced by an antibody that recognizes the same epitope on CD133 as the viral envelope and by shRNA-mediated knockdown of CD133. Conversely, the rate of transduction by CD133-LV is augmented by overexpression of CD133 in primary human GBM cultures. CD133-LV selectively transduces CD133-expressing cells in intracranial human GBM xenografts in NOD.SCID mice, but spares normal mouse brain tissue, neurons derived from human embryonic stem cells and primary human astrocytes. Our findings indicate that CD133-LV represents a novel tool for the selective genetic manipulation of CD133-expressing GSCs, and can be used to answer important questions about how these cells contribute to tumor biology and therapy resistance.


Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas.

  • Matthias A Karajannis‎ et al.
  • Neuro-oncology‎
  • 2014‎

Activation of the RAS-RAF-MEK-ERK signaling pathway is thought to be the key driver of pediatric low-grade astrocytoma (PLGA) growth. Sorafenib is a multikinase inhibitor targeting BRAF, VEGFR, PDGFR, and c-kit. This multicenter phase II study was conducted to determine the response rate to sorafenib in patients with recurrent or progressive PLGA.


Hypoxia- and vascular endothelial growth factor-induced stromal cell-derived factor-1alpha/CXCR4 expression in glioblastomas: one plausible explanation of Scherer's structures.

  • David Zagzag‎ et al.
  • The American journal of pathology‎
  • 2008‎

The morphological patterns of glioma cell invasion are known as the secondary structures of Scherer. In this report, we propose a biologically based mechanism for the nonrandom formation of Scherer's secondary structures based on the differential expression of stromal cell-derived factor (SDF)-1alpha and CXCR4 at the invading edge of glioblastomas. The chemokine SDF-1alpha was highly expressed in neurons, blood vessels, subpial regions, and white matter tracts that form the basis of Scherer's secondary structures. In contrast, the SDF-1alpha receptor, CXCR4, was highly expressed in invading glioma cells organized around neurons and blood vessels, in subpial regions, and along white matter tracts. Neuronal and endothelial cells exposed to vascular endothelial growth factor up-regulated the expression of SDF-1alpha. CXCR4-positive tumor cells migrated toward a SDF-1alpha gradient in vitro, whereas inhibition of CXCR4 expression decreased their migration. Similarly, inhibition of CXCR4 decreased levels of SDF-1alpha-induced phosphorylation of FAK, AKT, and ERK1/2, suggesting CXCR4 involvement in glioma invasion signaling. These studies offer one plausible molecular basis and explanation of the formation of Scherer's structures in glioma patients.


Polymorphous low-grade neuroepithelial tumor of the young (PLNTY): an epileptogenic neoplasm with oligodendroglioma-like components, aberrant CD34 expression, and genetic alterations involving the MAP kinase pathway.

  • Jason T Huse‎ et al.
  • Acta neuropathologica‎
  • 2017‎

Epileptogenic tumors affecting children and young adults are a morphologically diverse collection of neuroepithelial neoplasms that, as a group, exhibit varying levels of glial and/or neuronal differentiation. Recent advances in molecular profiling technology, including comprehensive DNA sequencing and methylation analysis, have enabled the application of more precise and biologically relevant classification schemes to these tumors. In this report, we describe a morphologically and molecularly distinct epileptogenic neoplasm, the polymorphous low-grade neuroepithelial tumor of the young (PLNTY), which likely accounts for a sizable portion of oligodendroglioma-like tumors affecting the pediatric population. Characteristic microscopic findings most notably include infiltrative growth, the invariable presence of oligodendroglioma-like cellular components, and intense immunolabeling for cluster of differentiation 34 (CD34). Moreover, integrative molecular profiling reveals a distinct DNA methylation signature for PLNTYs, along with frequent genetic abnormalities involving either B-Raf proto-oncogene (BRAF) or fibroblast growth factor receptors 2 and 3 (FGFR2, FGFR3). These findings suggest that PLNTY represents a distinct biological entity within the larger spectrum of pediatric, low-grade neuroepithelial tumors.


The posterior nasoseptal flap: A novel technique for closure after endoscopic transsphenoidal resection of pituitary adenomas.

  • James Barger‎ et al.
  • Surgical neurology international‎
  • 2018‎

While effective for the repair of large skull base defects, the Hadad-Bassagasteguy nasoseptal flap increases operative time and can result in a several-week period of postoperative crusting during re-mucosalization of the denuded nasal septum. Endoscopic transsphenoidal surgery for pituitary adenoma resection is generally not associated with large dural defects and high-flow cerebrospinal fluid (CSF) leaks requiring extensive reconstruction. Here, we present the posterior nasoseptal flap as a novel technique for closure of skull defects following endoscopic resection of pituitary adenomas. This flap is raised in all surgeries during the transnasal exposure using septal mucoperiosteum that would otherwise be discarded during the posterior septectomy performed in binostril approaches.


Notch signaling regulates metabolic heterogeneity in glioblastoma stem cells.

  • N Sumru Bayin‎ et al.
  • Oncotarget‎
  • 2017‎

Glioblastoma (GBM) stem cells (GSCs) reside in both hypoxic and vascular microenvironments within tumors. The molecular mechanisms that allow GSCs to occupy such contrasting niches are not understood. We used patient-derived GBM cultures to identify GSC subtypes with differential activation of Notch signaling, which co-exist in tumors but occupy distinct niches and match their metabolism accordingly. Multipotent GSCs with Notch pathway activation reside in perivascular niches, and are unable to entrain anaerobic glycolysis during hypoxia. In contrast, most CD133-expressing GSCs do not depend on canonical Notch signaling, populate tumors regardless of local vascularity and selectively utilize anaerobic glycolysis to expand in hypoxia. Ectopic activation of Notch signaling in CD133-expressing GSCs is sufficient to suppress anaerobic glycolysis and resistance to hypoxia. These findings demonstrate a novel role for Notch signaling in regulating GSC metabolism and suggest intratumoral GSC heterogeneity ensures metabolic adaptations to support tumor growth in diverse tumor microenvironments.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: