Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 130 papers

Evolutionary Trade-Offs Underlie the Multi-faceted Virulence of Staphylococcus aureus.

  • Maisem Laabei‎ et al.
  • PLoS biology‎
  • 2015‎

Bacterial virulence is a multifaceted trait where the interactions between pathogen and host factors affect the severity and outcome of the infection. Toxin secretion is central to the biology of many bacterial pathogens and is widely accepted as playing a crucial role in disease pathology. To understand the relationship between toxicity and bacterial virulence in greater depth, we studied two sequenced collections of the major human pathogen Staphylococcus aureus and found an unexpected inverse correlation between bacterial toxicity and disease severity. By applying a functional genomics approach, we identified several novel toxicity-affecting loci responsible for the wide range in toxic phenotypes observed within these collections. To understand the apparent higher propensity of low toxicity isolates to cause bacteraemia, we performed several functional assays, and our findings suggest that within-host fitness differences between high- and low-toxicity isolates in human serum is a contributing factor. As invasive infections, such as bacteraemia, limit the opportunities for onward transmission, highly toxic strains could gain an additional between-host fitness advantage, potentially contributing to the maintenance of toxicity at the population level. Our results clearly demonstrate how evolutionary trade-offs between toxicity, relative fitness, and transmissibility are critical for understanding the multifaceted nature of bacterial virulence.


Clostridium difficile trehalose metabolism variants are common and not associated with adverse patient outcomes when variably present in the same lineage.

  • David W Eyre‎ et al.
  • EBioMedicine‎
  • 2019‎

Clostridium difficile ribotype-027, ribotype-078, and ribotype-017 are virulent and epidemic lineages. Trehalose metabolism variants in these ribotypes, combined with increased human trehalose consumption, have been hypothesised to have contributed to their emergence and virulence.


Bayesian inference of ancestral dates on bacterial phylogenetic trees.

  • Xavier Didelot‎ et al.
  • Nucleic acids research‎
  • 2018‎

The sequencing and comparative analysis of a collection of bacterial genomes from a single species or lineage of interest can lead to key insights into its evolution, ecology or epidemiology. The tool of choice for such a study is often to build a phylogenetic tree, and more specifically when possible a dated phylogeny, in which the dates of all common ancestors are estimated. Here, we propose a new Bayesian methodology to construct dated phylogenies which is specifically designed for bacterial genomics. Unlike previous Bayesian methods aimed at building dated phylogenies, we consider that the phylogenetic relationships between the genomes have been previously evaluated using a standard phylogenetic method, which makes our methodology much faster and scalable. This two-step approach also allows us to directly exploit existing phylogenetic methods that detect bacterial recombination, and therefore to account for the effect of recombination in the construction of a dated phylogeny. We analysed many simulated datasets in order to benchmark the performance of our approach in a wide range of situations. Furthermore, we present applications to three different real datasets from recent bacterial genomic studies. Our methodology is implemented in a R package called BactDating which is freely available for download at https://github.com/xavierdidelot/BactDating.


Severe infections emerge from commensal bacteria by adaptive evolution.

  • Bernadette C Young‎ et al.
  • eLife‎
  • 2017‎

Bacteria responsible for the greatest global mortality colonize the human microbiota far more frequently than they cause severe infections. Whether mutation and selection among commensal bacteria are associated with infection is unknown. We investigated de novo mutation in 1163 Staphylococcus aureus genomes from 105 infected patients with nose colonization. We report that 72% of infections emerged from the nose, with infecting and nose-colonizing bacteria showing parallel adaptive differences. We found 2.8-to-3.6-fold adaptive enrichments of protein-altering variants in genes responding to rsp, which regulates surface antigens and toxin production; agr, which regulates quorum-sensing, toxin production and abscess formation; and host-derived antimicrobial peptides. Adaptive mutations in pathogenesis-associated genes were 3.1-fold enriched in infecting but not nose-colonizing bacteria. None of these signatures were observed in healthy carriers nor at the species-level, suggesting infection-associated, short-term, within-host selection pressures. Our results show that signatures of spontaneous adaptive evolution are specifically associated with infection, raising new possibilities for diagnosis and treatment.


A Quantitative Evaluation of MIRU-VNTR Typing Against Whole-Genome Sequencing for Identifying Mycobacterium tuberculosis Transmission: A Prospective Observational Cohort Study.

  • David H Wyllie‎ et al.
  • EBioMedicine‎
  • 2018‎

Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeat (MIRU-VNTR) typing is widely used in high-income countries to determine Mycobacterium tuberculosis relatedness. Whole-genome sequencing (WGS) is known to deliver greater specificity, but no quantitative prospective comparison has yet been undertaken.


Whole-genome sequencing demonstrates that fidaxomicin is superior to vancomycin for preventing reinfection and relapse of infection with Clostridium difficile.

  • David W Eyre‎ et al.
  • The Journal of infectious diseases‎
  • 2014‎

Whole-genome sequencing was used to determine whether the reductions in recurrence of Clostridium difficile infection observed with fidaxomicin in pivotal phase 3 trials occurred by preventing relapse of the same infection, by preventing reinfection with a new strain, or by preventing both outcomes. Paired isolates of C. difficile were available from 93 of 199 participants with recurrences (28 were treated with fidaxomicin, and 65 were treated with vancomycin). Given C. difficile evolutionary rates, paired samples ≤2 single-nucleotide variants (SNVs) apart were considered relapses, paired samples >10 SNVs apart were considered reinfection, and those 3-10 SNVs apart (or without whole-genome sequences) were considered indeterminate in a competing risks survival analysis. Fidaxomicin reduced the risk of both relapse (competing risks hazard ratio [HR], 0.40 [95% confidence interval {CI}, .25-.66]; P = .0003) and reinfection (competing risks HR, 0.33 [95% CI, 0.11-1.01]; P = .05).


Whole genome sequencing and de novo assembly identifies Sydney-like variant noroviruses and recombinants during the winter 2012/2013 outbreak in England.

  • T H Nicholas Wong‎ et al.
  • Virology journal‎
  • 2013‎

Norovirus is the commonest cause of epidemic gastroenteritis among people of all ages. Outbreaks frequently occur in hospitals and the community, costing the UK an estimated £110 m per annum. An evolutionary explanation for periodic increases in norovirus cases, despite some host-specific post immunity is currently limited to the identification of obvious recombinants. Our understanding could be significantly enhanced by full length genome sequences for large numbers of intensively sampled viruses, which would also assist control and vaccine design. Our objective is to develop rapid, high-throughput, end-to-end methods yielding complete norovirus genome sequences. We apply these methods to recent English outbreaks, placing them in the wider context of the international norovirus epidemic of winter 2012.


Asymptomatic Clostridium difficile colonisation and onward transmission.

  • David W Eyre‎ et al.
  • PloS one‎
  • 2013‎

Combined genotyping/whole genome sequencing and epidemiological data suggest that in endemic settings only a minority of Clostridium difficile infection, CDI, is acquired from other cases. Asymptomatic patients are a potential source for many unexplained cases.


Evolutionary history of the Clostridium difficile pathogenicity locus.

  • Kate E Dingle‎ et al.
  • Genome biology and evolution‎
  • 2014‎

The symptoms of Clostridium difficile infection are caused by toxins expressed from its 19 kb pathogenicity locus (PaLoc). Stable integration of the PaLoc is suggested by its single chromosomal location and the clade specificity of its different genetic variants. However, the PaLoc is variably present, even among closely related strains, and thus resembles a mobile genetic element. Our aim was to explain these apparently conflicting observations by reconstructing the evolutionary history of the PaLoc. Phylogenetic analyses and annotation of the regions spanning the PaLoc were performed using C. difficile population-representative genomes chosen from a collection of 1,693 toxigenic (PaLoc present) and nontoxigenic (PaLoc absent) isolates. Comparison of the core genome and PaLoc phylogenies demonstrated an eventful evolutionary history, with distinct PaLoc variants acquired clade specifically after divergence. In particular, our data suggest a relatively recent PaLoc acquisition in clade 4. Exchanges and losses of the PaLoc DNA have also occurred, via long homologous recombination events involving flanking chromosomal sequences. The most recent loss event occurred ∼30 years ago within a clade 1 genotype. The genetic organization of the clade 3 PaLoc was unique in containing a stably integrated novel transposon (designated Tn6218), variants of which were found at multiple chromosomal locations. Tn6218 elements were Tn916-related but nonconjugative and occasionally contained genes conferring resistance to clinically relevant antibiotics. The evolutionary histories of two contrasting but clinically important genetic elements were thus characterized: the PaLoc, mobilized rarely via homologous recombination, and Tn6218, mobilized frequently through transposition.


Detection of mixed infection from bacterial whole genome sequence data allows assessment of its role in Clostridium difficile transmission.

  • David W Eyre‎ et al.
  • PLoS computational biology‎
  • 2013‎

Bacterial whole genome sequencing offers the prospect of rapid and high precision investigation of infectious disease outbreaks. Close genetic relationships between microorganisms isolated from different infected cases suggest transmission is a strong possibility, whereas transmission between cases with genetically distinct bacterial isolates can be excluded. However, undetected mixed infections-infection with ≥2 unrelated strains of the same species where only one is sequenced-potentially impairs exclusion of transmission with certainty, and may therefore limit the utility of this technique. We investigated the problem by developing a computationally efficient method for detecting mixed infection without the need for resource-intensive independent sequencing of multiple bacterial colonies. Given the relatively low density of single nucleotide polymorphisms within bacterial sequence data, direct reconstruction of mixed infection haplotypes from current short-read sequence data is not consistently possible. We therefore use a two-step maximum likelihood-based approach, assuming each sample contains up to two infecting strains. We jointly estimate the proportion of the infection arising from the dominant and minor strains, and the sequence divergence between these strains. In cases where mixed infection is confirmed, the dominant and minor haplotypes are then matched to a database of previously sequenced local isolates. We demonstrate the performance of our algorithm with in silico and in vitro mixed infection experiments, and apply it to transmission of an important healthcare-associated pathogen, Clostridium difficile. Using hospital ward movement data in a previously described stochastic transmission model, 15 pairs of cases enriched for likely transmission events associated with mixed infection were selected. Our method identified four previously undetected mixed infections, and a previously undetected transmission event, but no direct transmission between the pairs of cases under investigation. These results demonstrate that mixed infections can be detected without additional sequencing effort, and this will be important in assessing the extent of cryptic transmission in our hospitals.


Decline of meticillin-resistant Staphylococcus aureus in Oxfordshire hospitals is strain-specific and preceded infection-control intensification.

  • David H Wyllie‎ et al.
  • BMJ open‎
  • 2011‎

Background In the past, strains of Staphylococcus aureus have evolved, expanded, made a marked clinical impact and then disappeared over several years. Faced with rising meticillin-resistant S aureus (MRSA) rates, UK government-supported infection control interventions were rolled out in Oxford Radcliffe Hospitals NHS Trust from 2006 onwards. Methods Using an electronic Database, the authors identified isolation of MRS among 611 434 hospital inpatients admitted to acute hospitals in Oxford, UK, 1 April 1998 to 30 June 2010. Isolation rates were modelled using segmented negative binomial regression for three groups of isolates: from blood cultures, from samples suggesting invasion (eg, cerebrospinal fluid, joint fluid, pus samples) and from surface swabs (eg, from wounds). Findings MRSA isolation rates rose rapidly from 1998 to the end of 2003 (annual increase from blood cultures 23%, 95% CI 16% to 30%), and then declined. The decline accelerated from mid-2006 onwards (annual decrease post-2006 38% from blood cultures, 95% CI 29% to 45%, p=0.003 vs previous decline). Rates of meticillin-sensitive S aureus changed little by comparison, with no evidence for declines 2006 onward (p=0.40); by 2010, sensitive S aureus was far more common than MRSA (blood cultures: 2.9 vs 0.25; invasive samples 14.7 vs 2.0 per 10 000 bedstays). Interestingly, trends in isolation of erythromycin-sensitive and resistant MRSA differed. Erythromycin-sensitive strains rose significantly faster (eg, from blood cultures p=0.002), and declined significantly more slowly (p=0.002), than erythromycin-resistant strains (global p<0.0001). Bacterial typing suggests this reflects differential spread of two major UK MRSA strains (ST22/36), ST36 having declined markedly 2006-2010, with ST22 becoming the dominant MRSA strain. Conclusions MRSA isolation rates were falling before recent intensification of infection-control measures. This, together with strain-specific changes in MRSA isolation, strongly suggests that incompletely understood biological factors are responsible for the much recent variation in MRSA isolation. A major, mainly meticillin-sensitive, S aureus burden remains.


Clinical Clostridium difficile: clonality and pathogenicity locus diversity.

  • Kate E Dingle‎ et al.
  • PloS one‎
  • 2011‎

Clostridium difficile infection (CDI) is an important cause of mortality and morbidity in healthcare settings. The major virulence determinants are large clostridial toxins, toxin A (tcdA) and toxin B (tcdB), encoded within the pathogenicity locus (PaLoc). Isolates vary in pathogenicity from hypervirulent PCR-ribotypes 027 and 078 with high mortality, to benign non-toxigenic strains carried asymptomatically. The relative pathogenicity of most toxigenic genotypes is still unclear, but may be influenced by PaLoc genetic variant. This is the largest study of C. difficile molecular epidemiology performed to date, in which a representative collection of recent isolates (n = 1290) from patients with CDI in Oxfordshire, UK, was genotyped by multilocus sequence typing. The population structure was described using NeighborNet and ClonalFrame. Sequence variation within toxin B (tcdB) and its negative regulator (tcdC), was mapped onto the population structure. The 69 Sequence Types (ST) showed evidence for homologous recombination with an effect on genetic diversification four times lower than mutation. Five previously recognised genetic groups or clades persisted, designated 1 to 5, each having a strikingly congruent association with tcdB and tcdC variants. Hypervirulent ST-11 (078) was the only member of clade 5, which was divergent from the other four clades within the MLST loci. However, it was closely related to the other clades within the tcdB and tcdC loci. ST-11 (078) may represent a divergent formerly non-toxigenic strain that acquired the PaLoc (at least) by genetic recombination. This study focused on human clinical isolates collected from a single geographic location, to achieve a uniquely high density of sampling. It sets a baseline of MLST data for future comparative studies investigating genotype virulence potential (using clinical severity data for these isolates), possible reservoirs of human CDI, and the evolutionary origins of hypervirulent strains.


Differences in outcome according to Clostridium difficile testing method: a prospective multicentre diagnostic validation study of C difficile infection.

  • Timothy D Planche‎ et al.
  • The Lancet. Infectious diseases‎
  • 2013‎

Diagnosis of Clostridium difficile infection is controversial because of many laboratory methods, compounded by two reference methods. Cytotoxigenic culture detects toxigenic C difficile and gives a positive result more frequently (eg, because of colonisation, which means that individuals can have the bacterium but no free toxin) than does the cytotoxin assay, which detects preformed toxin in faeces. We aimed to validate the reference methods according to clinical outcomes and to derive an optimum laboratory diagnostic algorithm for C difficile infection.


A pilot study of rapid benchtop sequencing of Staphylococcus aureus and Clostridium difficile for outbreak detection and surveillance.

  • David W Eyre‎ et al.
  • BMJ open‎
  • 2012‎

To investigate the prospects of newly available benchtop sequencers to provide rapid whole-genome data in routine clinical practice. Next-generation sequencing has the potential to resolve uncertainties surrounding the route and timing of person-to-person transmission of healthcare-associated infection, which has been a major impediment to optimal management.


A modified RNA-Seq approach for whole genome sequencing of RNA viruses from faecal and blood samples.

  • Elizabeth M Batty‎ et al.
  • PloS one‎
  • 2013‎

To date, very large scale sequencing of many clinically important RNA viruses has been complicated by their high population molecular variation, which creates challenges for polymerase chain reaction and sequencing primer design. Many RNA viruses are also difficult or currently not possible to culture, severely limiting the amount and purity of available starting material. Here, we describe a simple, novel, high-throughput approach to Norovirus and Hepatitis C virus whole genome sequence determination based on RNA shotgun sequencing (also known as RNA-Seq). We demonstrate the effectiveness of this method by sequencing three Norovirus samples from faeces and two Hepatitis C virus samples from blood, on an Illumina MiSeq benchtop sequencer. More than 97% of reference genomes were recovered. Compared with Sanger sequencing, our method had no nucleotide differences in 14,019 nucleotides (nt) for Noroviruses (from a total of 2 Norovirus genomes obtained with Sanger sequencing), and 8 variants in 9,542 nt for Hepatitis C virus (1 variant per 1,193 nt). The three Norovirus samples had 2, 3, and 2 distinct positions called as heterozygous, while the two Hepatitis C virus samples had 117 and 131 positions called as heterozygous. To confirm that our sample and library preparation could be scaled to true high-throughput, we prepared and sequenced an additional 77 Norovirus samples in a single batch on an Illumina HiSeq 2000 sequencer, recovering >90% of the reference genome in all but one sample. No discrepancies were observed across 118,757 nt compared between Sanger and our custom RNA-Seq method in 16 samples. By generating viral genomic sequences that are not biased by primer-specific amplification or enrichment, this method offers the prospect of large-scale, affordable studies of RNA viruses which could be adapted to routine diagnostic laboratory workflows in the near future, with the potential to directly characterize within-host viral diversity.


Sequence and functional analyses of Haemophilus spp. genomic islands.

  • Mario Juhas‎ et al.
  • Genome biology‎
  • 2007‎

A major part of horizontal gene transfer that contributes to the diversification and adaptation of bacteria is facilitated by genomic islands. The evolution of these islands is poorly understood. Some progress was made with the identification of a set of phylogenetically related genomic islands among the Proteobacteria, recognized from the investigation of the evolutionary origins of a Haemophilus influenzae antibiotic resistance island, namely ICEHin1056. More clarity comes from this comparative analysis of seven complete sequences of the ICEHin1056 genomic island subfamily.


DNA extraction from primary liquid blood cultures for bloodstream infection diagnosis using whole genome sequencing.

  • Luke W Anson‎ et al.
  • Journal of medical microbiology‎
  • 2018‎

Speed of bloodstream infection diagnosis is vital to reduce morbidity and mortality. Whole genome sequencing (WGS) performed directly from liquid blood culture could provide single-assay species and antibiotic susceptibility prediction; however, high inhibitor and human cell/DNA concentrations limit pathogen recovery. We develop a method for the preparation of bacterial DNA for WGS-based diagnostics direct from liquid blood culture.


Evolutionary dynamics of Enterococcus faecium reveals complex genomic relationships between isolates with independent emergence of vancomycin resistance.

  • Sebastiaan J van Hal‎ et al.
  • Microbial genomics‎
  • 2016‎

Enterococcus faecium, a major cause of hospital-acquired infections, remains problematic because of its propensity to acquire resistance to vancomycin, which currently is considered first-line therapy. Here, we assess the evolution and resistance acquisition dynamics of E. faecium in a clinical context using a series of 132 bloodstream infection isolates from a single hospital. All isolates, of which 49 (37 %) were vancomycin-resistant, underwent whole-genome sequencing. E. faecium was found to be subject to high rates of recombination with little evidence of sequence importation from outside the local E. faecium population. Apart from disrupting phylogenetic reconstruction, recombination was frequent enough to invalidate MLST typing in the identification of clonal expansion and transmission events, suggesting that, where available, whole-genome sequencing should be used in tracing the epidemiology of E. faecium nosocomial infections and establishing routes of transmission. Several forms of the Tn1549-like element-vanB gene cluster, which was exclusively responsible for vancomycin resistance, appeared and spread within the hospital during the study period. Several transposon gains and losses and instances of in situ evolution were inferred and, although usually chromosomal, the resistance element was also observed on a plasmid background. There was qualitative evidence for clonal expansions of both vancomycin-resistant and vancomycin-susceptible E. faecium with evidence of hospital-specific subclonal expansion. Our data are consistent with continuing evolution of this established hospital pathogen and confirm hospital vancomycin-susceptible and vancomycin-resistant E. faecium patient transmission events, underlining the need for careful consideration before modifying current E. faecium infection control strategies.


Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing.

  • CRyPTIC Consortium and the 100,000 Genomes Project‎ et al.
  • The New England journal of medicine‎
  • 2018‎

The World Health Organization recommends drug-susceptibility testing of Mycobacterium tuberculosis complex for all patients with tuberculosis to guide treatment decisions and improve outcomes. Whether DNA sequencing can be used to accurately predict profiles of susceptibility to first-line antituberculosis drugs has not been clear.


Selective culture enrichment and sequencing of feces to enhance detection of antimicrobial resistance genes in third-generation cephalosporin resistant Enterobacteriaceae.

  • Leon Peto‎ et al.
  • PloS one‎
  • 2019‎

Metagenomic sequencing of fecal DNA can usefully characterise an individual's intestinal resistome but is limited by its inability to detect important pathogens that may be present at low abundance, such as carbapenemase or extended-spectrum beta-lactamase producing Enterobacteriaceae. Here we aimed to develop a hybrid protocol to improve detection of resistance genes in Enterobacteriaceae by using a short period of culture enrichment prior to sequencing of DNA extracted directly from the enriched sample. Volunteer feces were spiked with carbapenemase-producing Enterobacteriaceae and incubated in selective broth culture for 6 hours before sequencing. Different DNA extraction methods were compared, including a plasmid extraction protocol to increase the detection of plasmid-associated resistance genes. Although enrichment prior to sequencing increased the detection of carbapenemase genes, the differing growth characteristics of the spike organisms precluded accurate quantification of their concentration prior to culture. Plasmid extraction increased detection of resistance genes present on plasmids, but the effects were heterogeneous and dependent on plasmid size. Our results demonstrate methods of improving the limit of detection of selected resistance mechanisms in a fecal resistome assay, but they also highlight the difficulties in using these techniques for accurate quantification and should inform future efforts to achieve this goal.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: