Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Evolutionary history of the Clostridium difficile pathogenicity locus.

Genome biology and evolution | 2014

The symptoms of Clostridium difficile infection are caused by toxins expressed from its 19 kb pathogenicity locus (PaLoc). Stable integration of the PaLoc is suggested by its single chromosomal location and the clade specificity of its different genetic variants. However, the PaLoc is variably present, even among closely related strains, and thus resembles a mobile genetic element. Our aim was to explain these apparently conflicting observations by reconstructing the evolutionary history of the PaLoc. Phylogenetic analyses and annotation of the regions spanning the PaLoc were performed using C. difficile population-representative genomes chosen from a collection of 1,693 toxigenic (PaLoc present) and nontoxigenic (PaLoc absent) isolates. Comparison of the core genome and PaLoc phylogenies demonstrated an eventful evolutionary history, with distinct PaLoc variants acquired clade specifically after divergence. In particular, our data suggest a relatively recent PaLoc acquisition in clade 4. Exchanges and losses of the PaLoc DNA have also occurred, via long homologous recombination events involving flanking chromosomal sequences. The most recent loss event occurred ∼30 years ago within a clade 1 genotype. The genetic organization of the clade 3 PaLoc was unique in containing a stably integrated novel transposon (designated Tn6218), variants of which were found at multiple chromosomal locations. Tn6218 elements were Tn916-related but nonconjugative and occasionally contained genes conferring resistance to clinically relevant antibiotics. The evolutionary histories of two contrasting but clinically important genetic elements were thus characterized: the PaLoc, mobilized rarely via homologous recombination, and Tn6218, mobilized frequently through transposition.

Pubmed ID: 24336451 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: Medical Research Council, United Kingdom
    Id: MR/K010174/1
  • Agency: Department of Health, United Kingdom
    Id: DRF-2010-03-40
  • Agency: Biotechnology and Biological Sciences Research Council, United Kingdom
  • Agency: Wellcome Trust, United Kingdom
    Id: 087646/Z/08/Z
  • Agency: Medical Research Council, United Kingdom
    Id: G0800778

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


MEGA Software (tool)

RRID:SCR_000667

Software integrated tool for conducting automatic and manual sequence alignment, inferring phylogenetic trees, mining web based databases, estimating rates of molecular evolution, and testing evolutionary hypotheses. Used for comparative analysis of DNA and protein sequences to infer molecular evolutionary patterns of genes, genomes, and species over time. MEGA version 4 expands on existing facilities for editing DNA sequence data from autosequencers, mining Web-databases, performing automatic and manual sequence alignment, analyzing sequence alignments to estimate evolutionary distances, inferring phylogenetic trees, and testing evolutionary hypotheses. MEGA version 6 enables inference of timetrees, as it implements RelTime method for estimating divergence times for all branching points in phylogeny.

View all literature mentions

European Bioinformatics Institute (tool)

RRID:SCR_004727

Non-profit academic organization for research and services in bioinformatics. Provides freely available data from life science experiments, performs basic research in computational biology, and offers user training programme, manages databases of biological data including nucleic acid, protein sequences, and macromolecular structures. Part of EMBL.

View all literature mentions

NCBI (tool)

RRID:SCR_006472

A portal to biomedical and genomic information. NCBI creates public databases, conducts research in computational biology, develops software tools for analyzing genome data, and disseminates biomedical information for the better understanding of molecular processes affecting human health and disease.

View all literature mentions

Vienna RNA (tool)

RRID:SCR_008550

This server provides programs, web services, and databases, related to our work on RNA secondary structures. For general information and other offerings from our group see the main TBI web server. With the 1st of May 2009 we updated our servers to the Vienna RNA package version 1.8.2! The Vienna RNA Servers: * RNAfold server predicts minimum free energy structures and base pair probabilities from single RNA or DNA sequences. * RNAalifold server predicts consensus secondary structures from an alignment of several related RNA or DNA sequences. You need to upload an alignment. * RNAinverse server allows you to design RNA sequences for any desired target secondary structure. * RNAcofold server allows you to predict the secondary structure of a dimer. * RNAup server allows you to predict the accessibility of a target region. * LocARNA server generates structural alignments from a set of sequences. In collaboration with the Bioinformatics Group Freiburg. * barriers server allows you to get insights into RNA folding kinetics. * RNAz server will assist you in detecting thermodynamically stable and evolutionarily conserved RNA secondary structures in multiple sequence alignments. * Structure conservation analysis server will assist you in detecting evolutionarily conserved RNA secondary structures in multiple sequence alignments. * RNAstrand server allows you to predict the reading direction of evolutionarily conserved RNA secondary structures. * RNAxs server assists you in siRNA design. * Bcheck predicts rnpB genes Downloads Get the Source code for: * the Vienna RNA Package, our basic RNA secondary structure analysis software. * The ALIDOT package for finding conserved structure motifs (add-on) * The barriers program for analysis of RNA folding landscapes. Databases * Atlas of conserved Viral RNA Structures found by ALIDOT

View all literature mentions

PubMLST (tool)

RRID:SCR_012955

Database for molecular typing and microbial genome diversity.

View all literature mentions

Velvet (tool)

RRID:SCR_010755

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software package as de novo genomic assembler for short read sequencing technologies using de Bruijn graphs. Takes in short read sequences, removes errors, then produces high quality unique contigs, retrieves repeated areas between contigs. Can leverage very short reads in combination with read pairs to produce useful assemblies. Operating system Unix/Linux.

View all literature mentions

TBLASTN (tool)

RRID:SCR_011822

Tool to search translated nucleotide databases using a protein query.

View all literature mentions

MUMmer (tool)

RRID:SCR_018171

Software package as system for rapidly aligning entire genomes. Alignment tool for DNA and protein sequences. Can align incomplete genomes.

View all literature mentions