Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 158 papers

RNAseq analysis for the diagnosis of muscular dystrophy.

  • Hernan Gonorazky‎ et al.
  • Annals of clinical and translational neurology‎
  • 2016‎

The precise genetic cause remains elusive in nearly 50% of patients with presumed neurogenetic disease, representing a significant barrier for clinical care. This is despite significant advances in clinical genetic diagnostics, including the application of whole-exome sequencing and next-generation sequencing-based gene panels. In this study, we identify a deep intronic mutation in the DMD gene in a patient with muscular dystrophy using both conventional and RNAseq-based transcriptome analyses. The implications of our data are that noncoding mutations likely comprise an important source of unresolved genetic disease and that RNAseq is a powerful platform for detecting such mutations.


MB3W1 is an orthotopic xenograft model for anaplastic medulloblastoma displaying cancer stem cell- and Group 3-properties.

  • Sebastian Dietl‎ et al.
  • BMC cancer‎
  • 2016‎

Medulloblastoma is the most common malignant brain tumor in children and can be divided in different molecular subgroups. Patients whose tumor is classified as a Group 3 tumor have a dismal prognosis. However only very few tumor models are available for this subgroup.


Characterization of novel biomarkers in selecting for subtype specific medulloblastoma phenotypes.

  • Lisa Liang‎ et al.
  • Oncotarget‎
  • 2015‎

Major research efforts have focused on defining cell surface marker profiles for characterization and selection of brain tumor stem/progenitor cells. Medulloblastoma is the most common primary malignant pediatric brain cancer and consists of 4 molecular subgroups: WNT, SHH, Group 3 and Group 4. Given the heterogeneity within and between medulloblastoma variants, surface marker profiles may be subtype-specific. Here, we employed a high throughput flow cytometry screen to identify differentially expressed cell surface markers in self-renewing vs. non-self-renewing SHH medulloblastoma cells. The top 25 markers were reduced to 4, CD271/p75NTR/NGFR, CD106/VCAM1, EGFR and CD171/NCAM-L1, by evaluating transcript levels in SHH tumors relative to samples representing the other variants. However, only CD271/p75NTR/NGFR and CD171/NCAM-L1 maintain differential expression between variants at the protein level. Functional characterization of CD271, a low affinity neurotrophin receptor, in cell lines and primary cultures suggested that CD271 selects for lower self-renewing progenitors or stem cells. Moreover, CD271 levels were negatively correlated with expression of SHH pathway genes. Our study reveals a novel role for CD271 in SHH medulloblastoma and suggests that targeting CD271 pathways could lead to the design of more selective therapies that lessen the broad impact of current treatments on developing nervous systems.


Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis.

  • Vijay Ramaswamy‎ et al.
  • Journal of clinical oncology : official journal of the American Society of Clinical Oncology‎
  • 2016‎

Posterior fossa ependymoma comprises two distinct molecular variants termed EPN_PFA and EPN_PFB that have a distinct biology and natural history. The therapeutic value of cytoreductive surgery and radiation therapy for posterior fossa ependymoma after accounting for molecular subgroup is not known.


Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress.

  • Sekyung Oh‎ et al.
  • Oncotarget‎
  • 2016‎

DDX3X encodes a DEAD-box family RNA helicase (DDX3) commonly mutated in medulloblastoma, a highly aggressive cerebellar tumor affecting both children and adults. Despite being implicated in several facets of RNA metabolism, the nature and scope of DDX3's interactions with RNA remain unclear. Here, we show DDX3 collaborates extensively with the translation initiation machinery through direct binding to 5'UTRs of nearly all coding RNAs, specific sites on the 18S rRNA, and multiple components of the translation initiation complex. Impairment of translation initiation is also evident in primary medulloblastomas harboring mutations in DDX3X, further highlighting DDX3's role in this process. Arsenite-induced stress shifts DDX3 binding from the 5'UTR into the coding region of mRNAs concomitant with a general reduction of translation, and both the shift of DDX3 on mRNA and decreased translation are blunted by expression of a catalytically-impaired, medulloblastoma-associated DDX3R534H variant. Furthermore, despite the global repression of translation induced by arsenite, translation is preserved on select genes involved in chromatin organization in DDX3R534H-expressing cells. Thus, DDX3 interacts extensively with RNA and ribosomal machinery to help remodel the translation landscape in response to stress, while cancer-related DDX3 variants adapt this response to selectively preserve translation.


Functionally defined therapeutic targets in diffuse intrinsic pontine glioma.

  • Catherine S Grasso‎ et al.
  • Nature medicine‎
  • 2015‎

Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood cancer. We performed a chemical screen in patient-derived DIPG cultures along with RNA-seq analyses and integrated computational modeling to identify potentially effective therapeutic strategies. The multi-histone deacetylase inhibitor panobinostat demonstrated therapeutic efficacy both in vitro and in DIPG orthotopic xenograft models. Combination testing of panobinostat and the histone demethylase inhibitor GSK-J4 revealed that the two had synergistic effects. Together, these data suggest a promising therapeutic strategy for DIPG.


A microRNA-1280/JAG2 network comprises a novel biological target in high-risk medulloblastoma.

  • Fengfei Wang‎ et al.
  • Oncotarget‎
  • 2015‎

Over-expression of PDGF receptors (PDGFRs) has been previously implicated in high-risk medulloblastoma (MB) pathogenesis. However, the exact biological functions of PDGFRα and PDGFRβ signaling in MB biology remain poorly understood. Here, we report the subgroup specific expression of PDGFRα and PDGFRβ and their associated biological pathways in MB tumors. c-MYC, a downstream target of PDGFRβ but not PDGFRα, is involved in PDGFRβ signaling associated with cell proliferation, cell death, and invasion. Concurrent inhibition of PDGFRβ and c-MYC blocks MB cell proliferation and migration synergistically. Integrated analysis of miRNA and miRNA targets regulated by both PDGFRβ and c-MYC reveals that increased expression of JAG2, a target of miR-1280, is associated with high metastatic dissemination at diagnosis and a poor outcome in MB patients. Our study may resolve the controversy on the role of PDGFRs in MB and unveils JAG2 as a key downstream effector of a PDGFRβ-driven signaling cascade and a potential therapeutic target.


Notch1 regulates the initiation of metastasis and self-renewal of Group 3 medulloblastoma.

  • Suzana A Kahn‎ et al.
  • Nature communications‎
  • 2018‎

Medulloblastoma is the most common malignant brain tumor of childhood. Group 3 medulloblastoma, the most aggressive molecular subtype, frequently disseminates through the leptomeningeal cerebral spinal fluid (CSF) spaces in the brain and spinal cord. The mechanism of dissemination through the CSF remains poorly understood, and the molecular pathways involved in medulloblastoma metastasis and self-renewal are largely unknown. Here we show that NOTCH1 signaling pathway regulates both the initiation of metastasis and the self-renewal of medulloblastoma. We identify a mechanism in which NOTCH1 activates BMI1 through the activation of TWIST1. NOTCH1 expression and activity are directly related to medulloblastoma metastasis and decreased survival rate of tumor-bearing mice. Finally, medulloblastoma-bearing mice intrathecally treated with anti-NRR1, a NOTCH1 blocking antibody, present lower frequency of spinal metastasis and higher survival rate. These findings identify NOTCH1 as a pivotal driver of Group 3 medulloblastoma metastasis and self-renewal, supporting the development of therapies targeting this pathway.


Significance of molecular classification of ependymomas: C11orf95-RELA fusion-negative supratentorial ependymomas are a heterogeneous group of tumors.

  • Kohei Fukuoka‎ et al.
  • Acta neuropathologica communications‎
  • 2018‎

Extensive molecular analyses of ependymal tumors have revealed that supratentorial and posterior fossa ependymomas have distinct molecular profiles and are likely to be different diseases. The presence of C11orf95-RELA fusion genes in a subset of supratentorial ependymomas (ST-EPN) indicated the existence of molecular subgroups. However, the pathogenesis of RELA fusion-negative ependymomas remains elusive. To investigate the molecular pathogenesis of these tumors and validate the molecular classification of ependymal tumors, we conducted thorough molecular analyses of 113 locally diagnosed ependymal tumors from 107 patients in the Japan Pediatric Molecular Neuro-Oncology Group. All tumors were histopathologically reviewed and 12 tumors were re-classified as non-ependymomas. A combination of RT-PCR, FISH, and RNA sequencing identified RELA fusion in 19 of 29 histologically verified ST-EPN cases, whereas another case was diagnosed as ependymoma RELA fusion-positive via the methylation classifier (68.9%). Among the 9 RELA fusion-negative ST-EPN cases, either the YAP1 fusion, BCOR tandem duplication, EP300-BCORL1 fusion, or FOXO1-STK24 fusion was detected in single cases. Methylation classification did not identify a consistent molecular class within this group. Genome-wide methylation profiling successfully sub-classified posterior fossa ependymoma (PF-EPN) into PF-EPN-A (PFA) and PF-EPN-B (PFB). A multivariate analysis using Cox regression confirmed that PFA was the sole molecular marker which was independently associated with patient survival. A clinically applicable pyrosequencing assay was developed to determine the PFB subgroup with 100% specificity using the methylation status of 3 genes, CRIP1, DRD4 and LBX2. Our results emphasized the significance of molecular classification in the diagnosis of ependymomas. RELA fusion-negative ST-EPN appear to be a heterogeneous group of tumors that do not fall into any of the existing molecular subgroups and are unlikely to form a single category.


Aberrant ERBB4-SRC Signaling as a Hallmark of Group 4 Medulloblastoma Revealed by Integrative Phosphoproteomic Profiling.

  • Antoine Forget‎ et al.
  • Cancer cell‎
  • 2018‎

The current consensus recognizes four main medulloblastoma subgroups (wingless, Sonic hedgehog, group 3 and group 4). While medulloblastoma subgroups have been characterized extensively at the (epi-)genomic and transcriptomic levels, the proteome and phosphoproteome landscape remain to be comprehensively elucidated. Using quantitative (phospho)-proteomics in primary human medulloblastomas, we unravel distinct posttranscriptional regulation leading to highly divergent oncogenic signaling and kinase activity profiles in groups 3 and 4 medulloblastomas. Specifically, proteomic and phosphoproteomic analyses identify aberrant ERBB4-SRC signaling in group 4. Hence, enforced expression of an activated SRC combined with p53 inactivation induces murine tumors that resemble group 4 medulloblastoma. Therefore, our integrative proteogenomics approach unveils an oncogenic pathway and potential therapeutic vulnerability in the most common medulloblastoma subgroup.


DNA methylation-based classification of central nervous system tumours.

  • David Capper‎ et al.
  • Nature‎
  • 2018‎

Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.


Two different STAT1 gain-of-function mutations lead to diverse IFN-γ-mediated gene expression.

  • Adi Ovadia‎ et al.
  • NPJ genomic medicine‎
  • 2018‎

Signal transducer and activator of transcription 1 (STAT1) regulates multiple biological processes downstream of a variety of cytokine receptors in many cell types. Heterozygous gain-of-function (GOF) mutations in STAT1 have been associated with a diverse phenotype encompassing chronic mucocutaneous candidiasis (CMCC) and declining immunity. There is no clear correlation between STAT1 domain-specific mutations and phenotype, and it remains unclear why GOF mutations in STAT1 result in such a wide spectrum of clinical presentations. To begin exploring this dilemma, we have studied the patterns of gene expression mediated by two different GOF mutations. Analysis of IFN-γ response elements using RNA microarrays in cells transfected with the rare H629Y mutant or the common R274G mutant showed distinct patterns of gene expression. We show here that the impact of GOF mutations in STAT1 is variant-specific. This difference in gene expression may explain the diversity in clinical manifestations experienced by these patients.


TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma.

  • Marc Remke‎ et al.
  • Acta neuropathologica‎
  • 2013‎

Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21 % of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83 %; 55/66) and WNT (31 %; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in <5 % of cases and showed no association with increased patient age. The prognostic implications of these mutations were highly subgroup-specific. TERT mutations identified a subset with good and poor prognosis in SHH and Group 4 tumors, respectively. Monosomy 6 was mostly restricted to WNT tumors without TERT mutations. Hallmark SHH focal copy number aberrations and chromosome 10q deletion were mutually exclusive with TERT mutations within SHH tumors. TERT promoter mutations are the most common recurrent somatic point mutation in medulloblastoma, and are very highly enriched in adult SHH and WNT tumors. TERT mutations define a subset of SHH medulloblastoma with distinct demographics, cytogenetics, and outcomes.


CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity.

  • Tara Spence‎ et al.
  • Acta neuropathologica‎
  • 2014‎

Amplification of the C19MC oncogenic miRNA cluster and high LIN28 expression has been linked to a distinctly aggressive group of cerebral CNS-PNETs (group 1 CNS-PNETs) arising in young children. In this study, we sought to evaluate the diagnostic specificity of C19MC and LIN28, and the clinical and biological spectra of C19MC amplified and/or LIN28+ CNS-PNETs. We interrogated 450 pediatric brain tumors using FISH and IHC analyses and demonstrate that C19MC alteration is restricted to a sub-group of CNS-PNETs with high LIN28 expression; however, LIN28 immunopositivity was not exclusive to CNS-PNETs but was also detected in a proportion of other malignant pediatric brain tumors including rhabdoid brain tumors and malignant gliomas. C19MC amplified/LIN28+ group 1 CNS-PNETs arose predominantly in children <4 years old; a majority arose in the cerebrum but 24 % (13/54) of tumors had extra-cerebral origins. Notably, group 1 CNS-PNETs encompassed several histologic classes including embryonal tumor with abundant neuropil and true rosettes (ETANTR), medulloepithelioma, ependymoblastoma and CNS-PNETs with variable differentiation. Strikingly, gene expression and methylation profiling analyses revealed a common molecular signature enriched for primitive neural features, high LIN28/LIN28B and DNMT3B expression for all group 1 CNS-PNETs regardless of location or tumor histology. Our collective findings suggest that current known histologic categories of CNS-PNETs which include ETANTRs, medulloepitheliomas, ependymoblastomas in various CNS locations, comprise a common molecular and diagnostic entity and identify inhibitors of the LIN28/let7/PI3K/mTOR axis and DNMT3B as promising therapeutics for this distinct histogenetic entity.


Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis.

  • Vijay Ramaswamy‎ et al.
  • The Lancet. Oncology‎
  • 2013‎

Recurrent medulloblastoma is a therapeutic challenge because it is almost always fatal. Studies have confirmed that medulloblastoma consists of at least four distinct subgroups. We sought to delineate subgroup-specific differences in medulloblastoma recurrence patterns.


Intertumoral Heterogeneity within Medulloblastoma Subgroups.

  • Florence M G Cavalli‎ et al.
  • Cancer cell‎
  • 2017‎

While molecular subgrouping has revolutionized medulloblastoma classification, the extent of heterogeneity within subgroups is unknown. Similarity network fusion (SNF) applied to genome-wide DNA methylation and gene expression data across 763 primary samples identifies very homogeneous clusters of patients, supporting the presence of medulloblastoma subtypes. After integration of somatic copy-number alterations, and clinical features specific to each cluster, we identify 12 different subtypes of medulloblastoma. Integrative analysis using SNF further delineates group 3 from group 4 medulloblastoma, which is not as readily apparent through analyses of individual data types. Two clear subtypes of infants with Sonic Hedgehog medulloblastoma with disparate outcomes and biology are identified. Medulloblastoma subtypes identified through integrative clustering have important implications for stratification of future clinical trials.


Comprehensive Analysis of Hypermutation in Human Cancer.

  • Brittany B Campbell‎ et al.
  • Cell‎
  • 2017‎

We present an extensive assessment of mutation burden through sequencing analysis of >81,000 tumors from pediatric and adult patients, including tumors with hypermutation caused by chemotherapy, carcinogens, or germline alterations. Hypermutation was detected in tumor types not previously associated with high mutation burden. Replication repair deficiency was a major contributing factor. We uncovered new driver mutations in the replication-repair-associated DNA polymerases and a distinct impact of microsatellite instability and replication repair deficiency on the scale of mutation load. Unbiased clustering, based on mutational context, revealed clinically relevant subgroups regardless of the tumors' tissue of origin, highlighting similarities in evolutionary dynamics leading to hypermutation. Mutagens, such as UV light, were implicated in unexpected cancers, including sarcomas and lung tumors. The order of mutational signatures identified previous treatment and germline replication repair deficiency, which improved management of patients and families. These data will inform tumor classification, genetic testing, and clinical trial design.


A GATA4-regulated tumor suppressor network represses formation of malignant human astrocytomas.

  • Sameer Agnihotri‎ et al.
  • The Journal of experimental medicine‎
  • 2011‎

Glioblastoma Multiforme (GBM), the most common and lethal primary human brain tumor, exhibits multiple molecular aberrations. We report that loss of the transcription factor GATA4, a negative regulator of normal astrocyte proliferation, is a driver in glioma formation and fulfills the hallmarks of a tumor suppressor gene (TSG). Although GATA4 was expressed in normal brain, loss of GATA4 was observed in 94/163 GBM operative samples and was a negative survival prognostic marker. GATA4 loss occurred through promoter hypermethylation or novel somatic mutations. Loss of GATA4 in normal human astrocytes promoted high-grade astrocytoma formation, in cooperation with other relevant genetic alterations such as activated Ras or loss of TP53. Loss of GATA4 with activated Ras in normal astrocytes promoted a progenitor-like phenotype, formation of neurospheres, and the ability to differentiate into astrocytes, neurons, and oligodendrocytes. Re-expression of GATA4 in human GBM cell lines, primary cultures, and brain tumor-initiating cells suppressed tumor growth in vitro and in vivo through direct activation of the cell cycle inhibitor P21(CIP1), independent of TP53. Re-expression of GATA4 also conferred sensitivity of GBM cells to temozolomide, a DNA alkylating agent currently used in GBM therapy. This sensitivity was independent of MGMT (O-6-methylguanine-DNA-methyltransferase), the DNA repair enzyme which is often implicated in temozolomide resistance. Instead, GATA4 reduced expression of APNG (alkylpurine-DNA-N-glycosylase), a DNA repair enzyme which is poorly characterized in GBM-mediated temozolomide resistance. Identification and validation of GATA4 as a TSG and its downstream targets in GBM may yield promising novel therapeutic strategies.


Intracystic therapies for cystic craniopharyngioma in childhood.

  • Ute Bartels‎ et al.
  • Frontiers in endocrinology‎
  • 2012‎

Craniopharyngioma of childhood are commonly cystic in nature. An intracystic catheter insertion and subsequent instillation of substances inducing cyst shrinkage seems a beneficial strategy avoiding additional morbidity in a highly vulnerable brain location.


Toward a more uniform sampling of human genetic diversity: a survey of worldwide populations by high-density genotyping.

  • Jinchuan Xing‎ et al.
  • Genomics‎
  • 2010‎

High-throughput genotyping data are useful for making inferences about human evolutionary history. However, the populations sampled to date are unevenly distributed, and some areas (e.g., South and Central Asia) have rarely been sampled in large-scale studies. To assess human genetic variation more evenly, we sampled 296 individuals from 13 worldwide populations that are not covered by previous studies. By combining these samples with a data set from our laboratory and the HapMap II samples, we assembled a final dataset of ~250,000 SNPs in 850 individuals from 40 populations. With more uniform sampling, the estimate of global genetic differentiation (F(ST)) substantially decreases from ~16% with the HapMap II samples to ~11%. A panel of copy number variations typed in the same populations shows patterns of diversity similar to the SNP data, with highest diversity in African populations. This unique sample collection also permits new inferences about human evolutionary history. The comparison of haplotype variation among populations supports a single out-of-Africa migration event and suggests that the founding population of Eurasia may have been relatively large but isolated from Africans for a period of time. We also found a substantial affinity between populations from central Asia (Kyrgyzstani and Mongolian Buryat) and America, suggesting a central Asian contribution to New World founder populations.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: