Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 39 papers

Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus.

  • Kate Lawrenson‎ et al.
  • Nature communications‎
  • 2016‎

A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10(-20)), ER-negative BC (P=1.1 × 10(-13)), BRCA1-associated BC (P=7.7 × 10(-16)) and triple negative BC (P-diff=2 × 10(-5)). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10(-3)) and ABHD8 (P<2 × 10(-3)). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3'-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.


Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer.

  • Fergus J Couch‎ et al.
  • Nature communications‎
  • 2016‎

Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.


No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer.

  • Ovarian Cancer Association Consortium, Breast Cancer Association Consortium, and Consortium of Modifiers of BRCA1 and BRCA2‎ et al.
  • Gynecologic oncology‎
  • 2016‎

Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3' UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370.


Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers.

  • Antonis C Antoniou‎ et al.
  • Breast cancer research : BCR‎
  • 2012‎

Several common alleles have been shown to be associated with breast and/or ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Recent genome-wide association studies of breast cancer have identified eight additional breast cancer susceptibility loci: rs1011970 (9p21, CDKN2A/B), rs10995190 (ZNF365), rs704010 (ZMIZ1), rs2380205 (10p15), rs614367 (11q13), rs1292011 (12q24), rs10771399 (12p11 near PTHLH) and rs865686 (9q31.2).


Evaluation of copy-number variants as modifiers of breast and ovarian cancer risk for BRCA1 pathogenic variant carriers.

  • Logan C Walker‎ et al.
  • European journal of human genetics : EJHG‎
  • 2017‎

Genome-wide studies of patients carrying pathogenic variants (mutations) in BRCA1 or BRCA2 have reported strong associations between single-nucleotide polymorphisms (SNPs) and cancer risk. To conduct the first genome-wide association analysis of copy-number variants (CNVs) with breast or ovarian cancer risk in a cohort of 2500 BRCA1 pathogenic variant carriers, CNV discovery was performed using multiple calling algorithms and Illumina 610k SNP array data from a previously published genome-wide association study. Our analysis, which focused on functionally disruptive genomic deletions overlapping gene regions, identified a number of loci associated with risk of breast or ovarian cancer for BRCA1 pathogenic variant carriers. Despite only including putative deletions called by at least two or more algorithms, detection of selected CNVs by ancillary molecular technologies only confirmed 40% of predicted common (>1% allele frequency) variants. These include four loci that were associated (unadjusted P<0.05) with breast cancer (GTF2H2, ZNF385B, NAALADL2 and PSG5), and two loci associated with ovarian cancer (CYP2A7 and OR2A1). An interesting finding from this study was an association of a validated CNV deletion at the CYP2A7 locus (19q13.2) with decreased ovarian cancer risk (relative risk=0.50, P=0.007). Genomic analysis found this deletion coincides with a region displaying strong regulatory potential in ovarian tissue, but not in breast epithelial cells. This study highlighted the need to verify CNVs in vitro, but also provides evidence that experimentally validated CNVs (with plausible biological consequences) can modify risk of breast or ovarian cancer in BRCA1 pathogenic variant carriers.


The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer.

  • Gisella Figlioli‎ et al.
  • NPJ breast cancer‎
  • 2019‎

Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM -/- patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors.


Neoadjuvant T-DM1/pertuzumab and paclitaxel/trastuzumab/pertuzumab for HER2+ breast cancer in the adaptively randomized I-SPY2 trial.

  • Amy S Clark‎ et al.
  • Nature communications‎
  • 2021‎

HER2-targeted therapy dramatically improves outcomes in early breast cancer. Here we report the results of two HER2-targeted combinations in the neoadjuvant I-SPY2 phase 2 adaptive platform trial for early breast cancer at high risk of recurrence: ado-trastuzumab emtansine plus pertuzumab (T-DM1/P) and paclitaxel, trastuzumab and pertuzumab (THP). Eligible women have >2.5 cm clinical stage II/III HER2+ breast cancer, adaptively randomized to T-DM1/P, THP, or a common control arm of paclitaxel/trastuzumab (TH), followed by doxorubicin/cyclophosphamide, then surgery. Both T-DM1/P and THP arms 'graduate' in all subtypes: predicted pCR rates are 63%, 72% and 33% for T-DM1/P (n = 52), THP (n = 45) and TH (n = 31) respectively. Toxicity burden is similar between arms. Degree of HER2 pathway signaling and phosphorylation in pretreatment biopsy specimens are associated with response to both T-DM1/P and THP and can further identify highly responsive HER2+ tumors to HER2-directed therapy. This may help identify patients who can safely de-escalate cytotoxic chemotherapy without compromising excellent outcome.


Multiomics in primary and metastatic breast tumors from the AURORA US network finds microenvironment and epigenetic drivers of metastasis.

  • Susana Garcia-Recio‎ et al.
  • Nature cancer‎
  • 2023‎

The AURORA US Metastasis Project was established with the goal to identify molecular features associated with metastasis. We assayed 55 females with metastatic breast cancer (51 primary cancers and 102 metastases) by RNA sequencing, tumor/germline DNA exome and low-pass whole-genome sequencing and global DNA methylation microarrays. Expression subtype changes were observed in ~30% of samples and were coincident with DNA clonality shifts, especially involving HER2. Downregulation of estrogen receptor (ER)-mediated cell-cell adhesion genes through DNA methylation mechanisms was observed in metastases. Microenvironment differences varied according to tumor subtype; the ER+/luminal subtype had lower fibroblast and endothelial content, while triple-negative breast cancer/basal metastases showed a decrease in B and T cells. In 17% of metastases, DNA hypermethylation and/or focal deletions were identified near HLA-A and were associated with reduced expression and lower immune cell infiltrates, especially in brain and liver metastases. These findings could have implications for treating individuals with metastatic breast cancer with immune- and HER2-targeting therapies.


Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2.

  • Anna Marie Mulligan‎ et al.
  • Breast cancer research : BCR‎
  • 2011‎

Previous studies have demonstrated that common breast cancer susceptibility alleles are differentially associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers. It is currently unknown how these alleles are associated with different breast cancer subtypes in BRCA1 and BRCA2 mutation carriers defined by estrogen (ER) or progesterone receptor (PR) status of the tumour.


Long-term trajectories of self-reported cognitive function in a cohort of older survivors of breast cancer: CALGB 369901 (Alliance).

  • Jeanne S Mandelblatt‎ et al.
  • Cancer‎
  • 2016‎

The number of survivors of breast cancer aged ≥65 years ("older") is growing, but to the authors' knowledge, little is known regarding the cognitive outcomes of these individuals.


Transcriptome-wide association study of breast cancer risk by estrogen-receptor status.

  • Helian Feng‎ et al.
  • Genetic epidemiology‎
  • 2020‎

Previous transcriptome-wide association studies (TWAS) have identified breast cancer risk genes by integrating data from expression quantitative loci and genome-wide association studies (GWAS), but analyses of breast cancer subtype-specific associations have been limited. In this study, we conducted a TWAS using gene expression data from GTEx and summary statistics from the hitherto largest GWAS meta-analysis conducted for breast cancer overall, and by estrogen receptor subtypes (ER+ and ER-). We further compared associations with ER+ and ER- subtypes, using a case-only TWAS approach. We also conducted multigene conditional analyses in regions with multiple TWAS associations. Two genes, STXBP4 and HIST2H2BA, were specifically associated with ER+ but not with ER- breast cancer. We further identified 30 TWAS-significant genes associated with overall breast cancer risk, including four that were not identified in previous studies. Conditional analyses identified single independent breast-cancer gene in three of six regions harboring multiple TWAS-significant genes. Our study provides new information on breast cancer genetics and biology, particularly about genomic differences between ER+ and ER- breast cancer.


Copy number variants as modifiers of breast cancer risk for BRCA1/BRCA2 pathogenic variant carriers.

  • Christopher Hakkaart‎ et al.
  • Communications biology‎
  • 2022‎

The contribution of germline copy number variants (CNVs) to risk of developing cancer in individuals with pathogenic BRCA1 or BRCA2 variants remains relatively unknown. We conducted the largest genome-wide analysis of CNVs in 15,342 BRCA1 and 10,740 BRCA2 pathogenic variant carriers. We used these results to prioritise a candidate breast cancer risk-modifier gene for laboratory analysis and biological validation. Notably, the HR for deletions in BRCA1 suggested an elevated breast cancer risk estimate (hazard ratio (HR) = 1.21), 95% confidence interval (95% CI = 1.09-1.35) compared with non-CNV pathogenic variants. In contrast, deletions overlapping SULT1A1 suggested a decreased breast cancer risk (HR = 0.73, 95% CI 0.59-0.91) in BRCA1 pathogenic variant carriers. Functional analyses of SULT1A1 showed that reduced mRNA expression in pathogenic BRCA1 variant cells was associated with reduced cellular proliferation and reduced DNA damage after treatment with DNA damaging agents. These data provide evidence that deleterious variants in BRCA1 plus SULT1A1 deletions contribute to variable breast cancer risk in BRCA1 carriers.


BRCA1 deficiency in mature CD8+ T lymphocytes impairs antitumor immunity.

  • Bogang Wu‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2023‎

Women with BRCA1 germline mutations have approximately an 80% lifetime chance of developing breast cancer. While the tumor suppressor function of BRCA1 in breast epithelium has been studied extensively, it is not clear whether BRCA1 deficiency in non-breast somatic cells also contribute to tumorigenesis. Here, we report that mouse Brca1 knockout (KO) in mature T lymphocytes compromises host antitumor immune response to transplanted syngeneic mouse mammary tumors. T cell adoptive transfer further corroborates CD8+ T cell-intrinsic impact of Brca1 KO on antitumor adaptive immunity. T cell-specific Brca1 KO mice exhibit fewer total CD8+, more exhausted, reduced cytotoxic, and reduced memory tumor-infiltrating T cell populations. Consistent with the preclinical data, cancer-free BRCA1 mutation-carrying women display lower abundance of circulating CD8+ lymphocytes than the age-matched control group. Thus, our findings support the notion that BRCA1 deficiency in adaptive immunity could contribute to BRCA1-related tumorigenesis. We also suggest that prophylactic boosting of adaptive immunity may reduce cancer incidence among at-risk women.


Evaluating the impact of age on immune checkpoint therapy biomarkers.

  • Rossin Erbe‎ et al.
  • Cell reports‎
  • 2021‎

Both tumors and aging alter the immune landscape of tissues. These interactions may play an important role in tumor progression among elderly patients and may suggest considerations for patient care. We leverage large-scale genomic and clinical databases to perform comprehensive comparative analysis of molecular and cellular markers of immune checkpoint blockade (ICB) response with patient age. These analyses demonstrate that aging is associated with increased tumor mutational burden, increased expression and decreased promoter methylation of immune checkpoint genes, and increased interferon gamma signaling in older patients in many cancer types studied, all of which are expected to promote ICB efficacy. Concurrently, we observe age-related alterations that might be expected to reduce ICB efficacy, such as decreases in T cell receptor diversity. Altogether, these changes suggest the capacity for robust ICB response in many older patients, which may warrant large-scale prospective study on ICB therapies among patients of advanced age.


PLAC1 as a serum biomarker for breast cancer.

  • Hongyan Yuan‎ et al.
  • PloS one‎
  • 2018‎

Placental-specific protein 1 (PLAC1) is an X-linked trophoblast gene that is re-expressed in several malignancies, including breast cancer, and is therefore a potential biomarker to follow disease onset and progression. Sera from 117 preoperative/pretreatment breast cancer patients and 51 control subjects, including those with fibrocystic disease, were analyzed for the presence of PLAC1 protein as well as its expression by IHC in tumor biopsies in a subset of subjects. Serum PLAC1 levels exceeded the mean plus one standard deviation (mean+SD) of the level in control subjects in 67% of subjects with ductal carcinoma in situ (DCIS), 67% with HER2+ tumors, 73% with triple-negative cancer and 73% with ER+/PR+ tumors. Greater sensitivity was achieved using the mean+2 SD of control PLAC1 serum values, where the false positive rate was 3% and was exceeded by 38%, 40%, 60% and 43% of subjects with DCIS, HER2+, TNBC and ER+/PR+/HER2- tumors. PLAC1 was detected in 97% of tumor biopsies, but did not correlate quantitatively with serum levels. There was no significant correlation of serum PLAC1 levels with race, age at diagnosis, body mass index (BMI) or the presence of metastatic disease. It remains to be determined whether PLAC1 serum levels can serve as a diagnostic biomarker for the presence or recurrence of disease post-surgery and/or therapy.


Managing hyperglycemia and rash associated with alpelisib: expert consensus recommendations using the Delphi technique.

  • Emily J Gallagher‎ et al.
  • NPJ breast cancer‎
  • 2024‎

Hyperglycemia and rash are expected but challenging adverse events of phosphatidylinositol-3-kinase inhibition (such as with alpelisib). Two modified Delphi panels were conducted to provide consensus recommendations for managing hyperglycemia and rash in patients taking alpelisib. Experts rated the appropriateness of interventions on a 1-to-9 scale; median scores and dispersion were used to classify the levels of agreement. Per the hyperglycemia panel, it is appropriate to start alpelisib in patients with HbA1c 6.5% (diabetes) to <8%, or at highest risk for developing hyperglycemia, if they have a pre-treatment endocrinology consult. Recommend prophylactic metformin in patients with baseline HbA1c 5.7% to 6.4%. Metformin is the preferred first-line anti-hyperglycemic agent. Per the rash panel, initiate prophylactic nonsedating H1 antihistamines in patients starting alpelisib. Nonsedating H1 antihistamines and topical steroids are the preferred initial management for rash. In addition to clinical trial evidence, these recommendations will help address gaps encountered in clinical practice.


Associations between self-reported diet during treatment and chemotherapy-induced peripheral neuropathy in a cooperative group trial (S0221).

  • Jennifer M Mongiovi‎ et al.
  • Breast cancer research : BCR‎
  • 2018‎

The pathophysiology of chemotherapy-induced peripheral neuropathy (CIPN) is not well understood. Currently, dose reduction is the only recommendation for alleviating symptoms, often leading to premature treatment cessation. The primary aim of this analysis was to determine the association between components of diet during taxane treatment for breast cancer and change in CIPN symptoms over treatment.


Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers.

  • Elena Vigorito‎ et al.
  • PloS one‎
  • 2016‎

Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95%CI: 0.68 to 0.79, p-value 2× 10-16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10-6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population.


Attenuation of RNA polymerase II pausing mitigates BRCA1-associated R-loop accumulation and tumorigenesis.

  • Xiaowen Zhang‎ et al.
  • Nature communications‎
  • 2017‎

Most BRCA1-associated breast tumours are basal-like yet originate from luminal progenitors. BRCA1 is best known for its functions in double-strand break repair and resolution of DNA replication stress. However, it is unclear whether loss of these ubiquitously important functions fully explains the cell lineage-specific tumorigenesis. In vitro studies implicate BRCA1 in elimination of R-loops, DNA-RNA hybrid structures involved in transcription and genetic instability. Here we show that R-loops accumulate preferentially in breast luminal epithelial cells, not in basal epithelial or stromal cells, of BRCA1 mutation carriers. Furthermore, R-loops are enriched at the 5' end of those genes with promoter-proximal RNA polymerase II (Pol II) pausing. Genetic ablation of Cobra1, which encodes a Pol II-pausing and BRCA1-binding protein, ameliorates R-loop accumulation and reduces tumorigenesis in Brca1-knockout mouse mammary epithelium. Our studies show that Pol II pausing is an important contributor to BRCA1-associated R-loop accumulation and breast cancer development.


RAD51 135G-->C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies.

  • Antonis C Antoniou‎ et al.
  • American journal of human genetics‎
  • 2007‎

RAD51 is an important component of double-stranded DNA-repair mechanisms that interacts with both BRCA1 and BRCA2. A single-nucleotide polymorphism (SNP) in the 5' untranslated region (UTR) of RAD51, 135G-->C, has been suggested as a possible modifier of breast cancer risk in BRCA1 and BRCA2 mutation carriers. We pooled genotype data for 8,512 female mutation carriers from 19 studies for the RAD51 135G-->C SNP. We found evidence of an increased breast cancer risk in CC homozygotes (hazard ratio [HR] 1.92 [95% confidence interval {CI} 1.25-2.94) but not in heterozygotes (HR 0.95 [95% CI 0.83-1.07]; P=.002, by heterogeneity test with 2 degrees of freedom [df]). When BRCA1 and BRCA2 mutation carriers were analyzed separately, the increased risk was statistically significant only among BRCA2 mutation carriers, in whom we observed HRs of 1.17 (95% CI 0.91-1.51) among heterozygotes and 3.18 (95% CI 1.39-7.27) among rare homozygotes (P=.0007, by heterogeneity test with 2 df). In addition, we determined that the 135G-->C variant affects RAD51 splicing within the 5' UTR. Thus, 135G-->C may modify the risk of breast cancer in BRCA2 mutation carriers by altering the expression of RAD51. RAD51 is the first gene to be reliably identified as a modifier of risk among BRCA1/2 mutation carriers.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: