Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 127 papers

A multi-modal parcellation of human cerebral cortex.

  • Matthew F Glasser‎ et al.
  • Nature‎
  • 2016‎

Understanding the amazingly complex human cerebral cortex requires a map (or parcellation) of its major subdivisions, known as cortical areas. Making an accurate areal map has been a century-old objective in neuroscience. Using multi-modal magnetic resonance images from the Human Connectome Project (HCP) and an objective semi-automated neuroanatomical approach, we delineated 180 areas per hemisphere bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults. We characterized 97 new areas and 83 areas previously reported using post-mortem microscopy or other specialized study-specific approaches. To enable automated delineation and identification of these areas in new HCP subjects and in future studies, we trained a machine-learning classifier to recognize the multi-modal 'fingerprint' of each cortical area. This classifier detected the presence of 96.6% of the cortical areas in new subjects, replicated the group parcellation, and could correctly locate areas in individuals with atypical parcellations. The freely available parcellation and classifier will enable substantially improved neuroanatomical precision for studies of the structural and functional organization of human cerebral cortex and its variation across individuals and in development, aging, and disease.


ConnectomeDB--Sharing human brain connectivity data.

  • Michael R Hodge‎ et al.
  • NeuroImage‎
  • 2016‎

ConnectomeDB is a database for housing and disseminating data about human brain structure, function, and connectivity, along with associated behavioral and demographic data. It is the main archive and dissemination platform for data collected under the WU-Minn consortium Human Connectome Project. Additional connectome-style study data is and will be made available in the database under current and future projects, including the Connectome Coordination Facility. The database currently includes multiple modalities of magnetic resonance imaging (MRI) and magnetoencephalograpy (MEG) data along with associated behavioral data. MRI modalities include structural, task, resting state and diffusion. MEG modalities include resting state and task. Imaging data includes unprocessed, minimally preprocessed and analysis data. Imaging data and much of the behavioral data are publicly available, subject to acceptance of data use terms, while access to some sensitive behavioral data is restricted to qualified investigators under a more stringent set of terms. ConnectomeDB is the public side of the WU-Minn HCP database platform. As such, it is geared towards public distribution, with a web-based user interface designed to guide users to the optimal set of data for their needs and a robust backend mechanism based on the commercial Aspera fasp service to enable high speed downloads. HCP data is also available via direct shipment of hard drives and Amazon S3.


Simultaneous multi-slice Turbo-FLASH imaging with CAIPIRINHA for whole brain distortion-free pseudo-continuous arterial spin labeling at 3 and 7 T.

  • Yi Wang‎ et al.
  • NeuroImage‎
  • 2015‎

Simultaneous multi-slice (SMS) or multiband (MB) imaging has recently been attempted for arterial spin labeled (ASL) perfusion MRI in conjunction with echo-planar imaging (EPI) readout. It was found that SMS-EPI can reduce the T1 relaxation effect of the label and improve image coverage and resolution with little penalty in signal-to-noise ratio (SNR). However, EPI still suffers from geometric distortion and signal dropout from field inhomogeneity effects especially at high and ultrahigh magnetic fields. Here we present a novel scheme for achieving high fidelity distortion-free quantitative perfusion imaging by combining pseudo-continuous ASL (pCASL) with SMS Turbo-FLASH (TFL) readout at both 3 and 7 T. Bloch equation simulation was performed to characterize and optimize the TFL-based pCASL perfusion signal. Two MB factors (3 and 5) were implemented in SMS-TFL pCASL and compared with standard 2D TFL and EPI pCASL sequences. The temporal SNR of SMS-TFL pCASL relative to that of standard TFL pCASL was 0.76 ± 0.10 and 0.74 ± 0.11 at 7 T and 0.70 ± 0.05 and 0.65 ± 0.05 at 3T for MB factor of 3 and 5, respectively. By implementing background suppression in conjunction with SMS-TFL at 3T, the relative temporal SNR improved to 0.84 ± 0.09 and 0.79 ± 0.10 for MB factor of 3 and 5, respectively. Compared to EPI pCASL, significantly increased temporal SNR (p<0.001) and improved visualization of orbitofrontal cortex were achieved using SMS-TFL pCASL. By combining SMS acceleration with TFL pCASL, we demonstrated the feasibility for whole brain distortion-free quantitative mapping of cerebral blood flow at high and ultrahigh magnetic fields.


Sub-millimeter T2 weighted fMRI at 7 T: comparison of 3D-GRASE and 2D SE-EPI.

  • Valentin G Kemper‎ et al.
  • Frontiers in neuroscience‎
  • 2015‎

Functional magnetic resonance imaging (fMRI) allows studying human brain function non-invasively up to the spatial resolution of cortical columns and layers. Most fMRI acquisitions rely on the blood oxygenation level dependent (BOLD) contrast employing T(*) 2 weighted 2D multi-slice echo-planar imaging (EPI). At ultra-high magnetic field (i.e., 7 T and above), it has been shown experimentally and by simulation, that T2 weighted acquisitions yield a signal that is spatially more specific to the site of neuronal activity at the cost of functional sensitivity. This study compared two T2 weighted imaging sequences, inner-volume 3D Gradient-and-Spin-Echo (3D-GRASE) and 2D Spin-Echo EPI (SE-EPI), with evaluation of their imaging point-spread function (PSF), functional specificity, and functional sensitivity at sub-millimeter resolution. Simulations and measurements of the imaging PSF revealed that the strongest anisotropic blurring in 3D-GRASE (along the second phase-encoding direction) was about 60% higher than the strongest anisotropic blurring in 2D SE-EPI (along the phase-encoding direction). In a visual paradigm, the BOLD sensitivity of 3D-GRASE was found to be superior due to its higher temporal signal-to-noise ratio (tSNR). High resolution cortical depth profiles suggested that the contrast mechanisms are similar between the two sequences, however, 2D SE-EPI had a higher surface bias owing to the higher T(*) 2 contribution of the longer in-plane EPI echo-train for full field of view compared to the reduced field of view of zoomed 3D-GRASE.


The prestimulus default mode network state predicts cognitive task performance levels on a mental rotation task.

  • Tabea Kamp‎ et al.
  • Brain and behavior‎
  • 2018‎

Linking individual task performance to preceding, regional brain activation is an ongoing goal of neuroscientific research. Recently, it could be shown that the activation and connectivity within large-scale brain networks prior to task onset influence performance levels. More specifically, prestimulus default mode network (DMN) effects have been linked to performance levels in sensory near-threshold tasks, as well as cognitive tasks. However, it still remains uncertain how the DMN state preceding cognitive tasks affects performance levels when the period between task trials is long and flexible, allowing participants to engage in different cognitive states.


Temporal multivariate pattern analysis (tMVPA): A single trial approach exploring the temporal dynamics of the BOLD signal.

  • Luca Vizioli‎ et al.
  • Journal of neuroscience methods‎
  • 2018‎

fMRI provides spatial resolution that is unmatched by non-invasive neuroimaging techniques. Its temporal dynamics however are typically neglected due to the sluggishness of the hemodynamic signal.


Targeting the affective brain-a randomized controlled trial of real-time fMRI neurofeedback in patients with depression.

  • David M A Mehler‎ et al.
  • Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology‎
  • 2018‎

Functional magnetic resonance imaging neurofeedback (fMRI-NF) training of areas involved in emotion processing can reduce depressive symptoms by over 40% on the Hamilton Depression Rating Scale (HDRS). However, it remains unclear if this efficacy is specific to feedback from emotion-regulating regions. We tested in a single-blind, randomized, controlled trial if upregulation of emotion areas (NFE) yields superior efficacy compared to upregulation of a control region activated by visual scenes (NFS). Forty-three moderately to severely depressed medicated patients were randomly assigned to five sessions augmentation treatment of either NFE or NFS training. At primary outcome (week 12) no significant group mean HDRS difference was found (B = -0.415 [95% CI -4.847 to 4.016], p = 0.848) for the 32 completers (16 per group). However, across groups depressive symptoms decreased by 43%, and 38% of patients remitted. These improvements lasted until follow-up (week 18). Both groups upregulated target regions to a similar extent. Further, clinical improvement was correlated with an increase in self-efficacy scores. However, the interpretation of clinical improvements remains limited due to lack of a sham-control group. We thus surveyed effects reported for accepted augmentation therapies in depression. Data indicated that our findings exceed expected regression to the mean and placebo effects that have been reported for drug trials and other sham-controlled high-technology interventions. Taken together, we suggest that the experience of successful self-regulation during fMRI-NF training may be therapeutic. We conclude that if fMRI-NF is effective for depression, self-regulation training of higher visual areas may provide an effective alternative.


Estimation of the CSA-ODF using Bayesian compressed sensing of multi-shell HARDI.

  • Julio M Duarte-Carvajalino‎ et al.
  • Magnetic resonance in medicine‎
  • 2014‎

Diffusion MRI provides important information about the brain white matter structures and has opened new avenues for neuroscience and translational research. However, acquisition time needed for advanced applications can still be a challenge in clinical settings. There is consequently a need to accelerate diffusion MRI acquisitions.


Measuring structural-functional correspondence: spatial variability of specialised brain regions after macro-anatomical alignment.

  • Martin A Frost‎ et al.
  • NeuroImage‎
  • 2012‎

The central question of the relationship between structure and function in the human brain is still not well understood. In order to investigate this fundamental relationship we create functional probabilistic maps from a large set of mapping experiments and compare the location of functionally localised regions across subjects using different whole-brain alignment schemes. To avoid the major problems associated with meta-analysis approaches, all subjects are scanned using the same paradigms, the same scanner and the same analysis pipeline. We show that an advanced, curvature driven cortex based alignment (CBA) scheme largely removes macro-anatomical variability across subjects. Remaining variability in the observed spatial location of functional regions, thus, reflects the "true" functional variability, i.e. the quantified variability is a good estimator of the underlying structural-functional correspondence. After localising 13 widely studied functional areas, we found a large variability in the degree to which functional areas respect macro-anatomical boundaries across the cortex. Some areas, such as the frontal eye fields (FEF) are strongly bound to a macro-anatomical location. Fusiform face area (FFA) on the other hand, varies in its location along the length of the fusiform gyrus even though the gyri themselves are well aligned across subjects. Language areas were found to vary greatly across subjects whilst a high degree of overlap was observed in sensory and motor areas. The observed differences in functional variability for different specialised areas suggest that a more complete estimation of the structure-function relationship across the whole cortex requires further empirical studies with an expanded test battery.


Human Object-Similarity Judgments Reflect and Transcend the Primate-IT Object Representation.

  • Marieke Mur‎ et al.
  • Frontiers in psychology‎
  • 2013‎

Primate inferior temporal (IT) cortex is thought to contain a high-level representation of objects at the interface between vision and semantics. This suggests that the perceived similarity of real-world objects might be predicted from the IT representation. Here we show that objects that elicit similar activity patterns in human IT (hIT) tend to be judged as similar by humans. The IT representation explained the human judgments better than early visual cortex, other ventral-stream regions, and a range of computational models. Human similarity judgments exhibited category clusters that reflected several categorical divisions that are prevalent in the IT representation of both human and monkey, including the animate/inanimate and the face/body division. Human judgments also reflected the within-category representation of IT. However, the judgments transcended the IT representation in that they introduced additional categorical divisions. In particular, human judgments emphasized human-related additional divisions between human and non-human animals and between man-made and natural objects. hIT was more similar to monkey IT than to human judgments. One interpretation is that IT has evolved visual-feature detectors that distinguish between animates and inanimates and between faces and bodies because these divisions are fundamental to survival and reproduction for all primate species, and that other brain systems serve to more flexibly introduce species-dependent and evolutionarily more recent divisions.


Simultaneous ODF estimation and tractography in HARDI.

  • H Ertan Cetingul‎ et al.
  • Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference‎
  • 2012‎

We consider the problem of tracking white matter fibers in high angular resolution diffusion imaging (HARDI) data while simultaneously estimating the local fiber orientation profile. Prior work showed that an unscented Kalman filter (UKF) can be used for this problem, yet existing algorithms employ parametric mixture models to represent water diffusion and to define the state space. To address this restrictive model dependency, we propose to extend the UKF to HARDI data modeled by orientation distribution functions (ODFs), a more generic diffusion model. We consider the spherical harmonic representation of the HARDI signal as the state, enforce nonnegativity of the ODFs, and perform tractography using the directions at which the ODFs attain their peaks. In simulations, our method outperforms filtered two-tensor tractography at different levels of noise by achieving a reduction in mean Chamfer error of 0.05 to 0.27 voxels; it also produced in vivo fiber tracking that is consistent with the neuroanatomy.


Data on a cytoarchitectonic brain atlas: effects of brain template and a comparison to a multimodal atlas.

  • Mona Rosenke‎ et al.
  • Data in brief‎
  • 2017‎

The data presented here are related to the research article: "A cross-validated cytoarchitectonic atlas of the human ventral visual stream" in which we developed a cytoarchitectonic atlas of ventral visual cortex. Here, we provide two additional quantifications of this cytoarchitectonic atlas: First, we quantify the effect of brain template on cross-validation performance. The data show a comparison between cortex-based alignment to two templates: the postmortem average brain and the FreeSurfer average brain. Second, we quantify the relationship between this cytoarchitectonic atlas and a recently published multimodal atlas of the human brain (Glasser et al., 2016).


Increasing Lateralized Motor Activity in Younger and Older Adults using Real-time fMRI during Executed Movements.

  • Heather F Neyedli‎ et al.
  • Neuroscience‎
  • 2018‎

Neurofeedback training involves presenting an individual with a representation of their brain activity and instructing them to alter the activity using the feedback. One potential application of neurofeedback is for patients to alter neural activity to improve function. For example, there is evidence that greater laterality of movement-related activity is associated with better motor outcomes after stroke; so using neurofeedback to increase laterality may provide a novel route for improving outcomes. However, we must demonstrate that individuals can control relevant neurofeedback signals. Here, we performed two proof-of-concept studies, one in younger (median age: 26years) and one in older healthy volunteers (median age: 67.5years). The purpose was to determine if participants could manipulate laterality of activity between the motor cortices using real-time fMRI neurofeedback while performing simple hand movements. The younger cohort trained using their left and right hand, the older group trained using their left hand only. In both studies participants in a neurofeedback group were able to achieve more lateralized activity than those in a sham group (younger adults: F(1,23)=4.37, p<0.05; older adults: F(1,15)=9.08, p<0.01). Moreover, the younger cohort was able to maintain the lateralized activity for right hand movements once neurofeedback was removed. The older cohort did not maintain lateralized activity upon feedback removal, with the limitation being that they did not train with their right hand. The results provide evidence that neurofeedback can be used with executed movements to promote lateralized brain activity and thus is amenable for testing as a therapeutic intervention for patients following stroke.


High resolution data analysis strategies for mesoscale human functional MRI at 7 and 9.4T.

  • Valentin G Kemper‎ et al.
  • NeuroImage‎
  • 2018‎

The advent of ultra-high field functional magnetic resonance imaging (fMRI) has greatly facilitated submillimeter resolution acquisitions (voxel volume below (1mm³)), allowing the investigation of cortical columns and cortical depth dependent (i.e. laminar) structures in the human brain. Advanced data analysis techniques are essential to exploit the information in high resolution functional measures. In this article, we use recent, exemplary 9.4T human functional and anatomical data to review the advantages and disadvantages of (1) pooling high resolution data across regions of interest for cortical depth profile analysis, (2) pooling across cortical depths for mapping patches of cortex while discarding depth-dependent (i.e. columnar) effects, and (3) isotropic sampling without pooling to assess individual voxel's responses. A set of cortical depth meshes may be a solution to sampling information tangentially while keeping correspondence across depths. For quantitative analysis of the spatial organization in fine-grained structures, a cortical grid approach is advantageous. We further extend this general framework by combining it with a previously introduced cortical layer volume-preserving (equi-volume) approach. This framework can readily accommodate the research questions which allow for spatial smoothing within or across layers. We demonstrate and discuss that equi-volume sampling yields a slight advantage over equidistant sampling given the current limitations of fMRI voxel size, participant motion, coregistration and segmentation. Our 9.4T human anatomical and functional data indicate the advantage over lower fields including 7T and demonstrate the practical applicability of T2* and T2-weighted fMRI acquisitions.


Improving a probabilistic cytoarchitectonic atlas of auditory cortex using a novel method for inter-individual alignment.

  • Omer Faruk Gulban‎ et al.
  • eLife‎
  • 2020‎

The human superior temporal plane, the site of the auditory cortex, displays high inter-individual macro-anatomical variation. This questions the validity of curvature-based alignment (CBA) methods for in vivo imaging data. Here, we have addressed this issue by developing CBA+, which is a cortical surface registration method that uses prior macro-anatomical knowledge. We validate this method by using cytoarchitectonic areas on 10 individual brains (which we make publicly available). Compared to volumetric and standard surface registration, CBA+ results in a more accurate cytoarchitectonic auditory atlas. The improved correspondence of micro-anatomy following the improved alignment of macro-anatomy validates the superiority of CBA+ compared to CBA. In addition, we use CBA+ to align in vivo and postmortem data. This allows projection of functional and anatomical information collected in vivo onto the cytoarchitectonic areas, which has the potential to contribute to the ongoing debate on the parcellation of the human auditory cortex.


HARDI-ZOOMit protocol improves specificity to microstructural changes in presymptomatic myelopathy.

  • René Labounek‎ et al.
  • Scientific reports‎
  • 2020‎

Diffusion magnetic resonance imaging (dMRI) proved promising in patients with non-myelopathic degenerative cervical cord compression (NMDCCC), i.e., without clinically manifested myelopathy. Aim of the study is to present a fast multi-shell HARDI-ZOOMit dMRI protocol and validate its usability to detect microstructural myelopathy in NMDCCC patients. In 7 young healthy volunteers, 13 age-comparable healthy controls, 18 patients with mild NMDCCC and 15 patients with severe NMDCCC, the protocol provided higher signal-to-noise ratio, enhanced visualization of white/gray matter structures in microstructural maps, improved dMRI metric reproducibility, preserved sensitivity (SE = 87.88%) and increased specificity (SP = 92.31%) of control-patient group differences when compared to DTI-RESOLVE protocol (SE = 87.88%, SP = 76.92%). Of the 56 tested microstructural parameters, HARDI-ZOOMit yielded significant patient-control differences in 19 parameters, whereas in DTI-RESOLVE data, differences were observed in 10 parameters, with mostly lower robustness. Novel marker the white-gray matter diffusivity gradient demonstrated the highest separation. HARDI-ZOOMit protocol detected larger number of crossing fibers (5-15% of voxels) with physiologically plausible orientations than DTI-RESOLVE protocol (0-8% of voxels). Crossings were detected in areas of dorsal horns and anterior white commissure. HARDI-ZOOMit protocol proved to be a sensitive and practical tool for clinical quantitative spinal cord imaging.


Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset?

  • Kurt G Schilling‎ et al.
  • NeuroImage‎
  • 2021‎

White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process.


Network curvature as a hallmark of brain structural connectivity.

  • Hamza Farooq‎ et al.
  • Nature communications‎
  • 2019‎

Although brain functionality is often remarkably robust to lesions and other insults, it may be fragile when these take place in specific locations. Previous attempts to quantify robustness and fragility sought to understand how the functional connectivity of brain networks is affected by structural changes, using either model-based predictions or empirical studies of the effects of lesions. We advance a geometric viewpoint relying on a notion of network curvature, the so-called Ollivier-Ricci curvature. This approach has been proposed to assess financial market robustness and to differentiate biological networks of cancer cells from healthy ones. Here, we apply curvature-based measures to brain structural networks to identify robust and fragile brain regions in healthy subjects. We show that curvature can also be used to track changes in brain connectivity related to age and autism spectrum disorder (ASD), and we obtain results that are in agreement with previous MRI studies.


Ultra-high field (10.5T) diffusion-weighted MRI of the macaque brain.

  • Mark D Grier‎ et al.
  • NeuroImage‎
  • 2022‎

Diffu0sion-weighted magnetic resonance imaging (dMRI) is a non-invasive imaging technique that provides information about the barriers to the diffusion of water molecules in tissue. In the brain, this information can be used in several important ways, including to examine tissue abnormalities associated with brain disorders and to infer anatomical connectivity and the organization of white matter bundles through the use of tractography algorithms. However, dMRI also presents certain challenges. For example, historically, the biological validation of tractography models has shown only moderate correlations with anatomical connectivity as determined through invasive tract-tracing studies. Some of the factors contributing to such issues are low spatial resolution, low signal-to-noise ratios, and long scan times required for high-quality data, along with modeling challenges like complex fiber crossing patterns. Leveraging the capabilities provided by an ultra-high field scanner combined with denoising, we have acquired whole-brain, 0.58 mm isotropic resolution dMRI with a 2D-single shot echo planar imaging sequence on a 10.5 Tesla scanner in anesthetized macaques. These data produced high-quality tractograms and maps of scalar diffusion metrics in white matter. This work demonstrates the feasibility and motivation for in-vivo dMRI studies seeking to benefit from ultra-high fields.


Effect of SSRIs on Resting-State Functional Brain Networks in Adolescents with Major Depressive Disorder.

  • Shu-Hsien Chu‎ et al.
  • Journal of clinical medicine‎
  • 2021‎

Investigation of brain changes in functional connectivity and functional network topology from receiving 8-week selective serotonin reuptake inhibitor (SSRI) treatments is conducted in 12 unmedicated adolescents with major depressive disorder (MDD) by using wavelet-filtered resting-state functional magnetic resonance imaging (fMRI). Changes are observed in frontal-limbic, temporal, and default mode networks. In particular, topological analysis shows, at the global scale and in the 0.12-0.25 Hz band, that the normalized clustering coefficient and smallworldness of brain networks decreased after treatment. Regional changes in clustering coefficient and efficiency were observed in the bilateral caudal middle frontal gyrus, rostral middle frontal gyrus, superior temporal gyrus, left pars triangularis, putamen, and right superior frontal gyrus. Furthermore, changes of nodal centrality and changes of connectivity associated with these frontal and temporal regions confirm the global topological alternations. Moreover, frequency dependence is observed from FDR-controlled subnetworks for the limbic-cortical connectivity change. In the high-frequency band, the altered connections involve mostly frontal regions, while the altered connections in the low-frequency bands spread to parietal and temporal areas. Due to the limitation of small sample sizes and lack of placebo control, these preliminary findings require confirmation with future work using larger samples. Confirmation of biomarkers associated with treatment could suggest potential avenues for clinical applications such as tracking treatment response and neurobiologically informed treatment optimization.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: