Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 78 papers

CYP2W1 is highly expressed in adrenal glands and is positively associated with the response to mitotane in adrenocortical carcinoma.

  • Cristina L Ronchi‎ et al.
  • PloS one‎
  • 2014‎

Adrenocortical tumors comprise frequent adenomas (ACA) and rare carcinomas (ACC). Human cytochrome P450 2W1 (CYP2W1) is highly expressed in some cancers holding the potential to activate certain drugs into tumor cytotoxins.


Endothelial cells regulate β-catenin activity in adrenocortical cells via secretion of basic fibroblast growth factor.

  • Carolin Schwafertz‎ et al.
  • Molecular and cellular endocrinology‎
  • 2017‎

Endothelial cell-derived products influence the synthesis of aldosterone and cortisol in human adrenocortical cells by modulating proteins such as steroidogenic acute-regulatory (StAR) protein, steroidogenic factor (SF)-1 and CITED2. However, the potential endothelial cell-derived factors that mediate this effect are still unknown. The current study was perfomed to look into the control of β-catenin activity by endothelial cell-derived factors and to identify a mechanism by which they affect β-catenin activity in adrenocortical NCIH295R cells. Using reporter gene assays and Western blotting, we found that endothelial cell-conditioned medium (ECCM) led to nuclear translocation of β-catenin and an increase in β-catenin-dependent transcription that could be blocked by U0126, an inhibitor of the mitogen-activated protein kinase pathway. Furthermore, we found that a receptor tyrosin kinase (RTK) was involved in ECCM-induced β-catenin-dependent transcription. Through selective inhibition of RTK using Su5402, it was shown that receptors responding to basic fibroblast growth factor (bFGF) mediate the action of ECCM. Adrenocortical cells treated with bFGF showed a significant greater level of bFGF mRNA. In addition, HUVECs secrete bFGF in a density-dependent manner. In conclusion, the data suggest that endothelial cells regulate β-catenin activity in adrenocortical cells also via secretion of basic fibroblast growth factor.


Secretion and signaling activities of lipoprotein-associated hedgehog and non-sterol-modified hedgehog in flies and mammals.

  • Wilhelm Palm‎ et al.
  • PLoS biology‎
  • 2013‎

Hedgehog (Hh) proteins control animal development and tissue homeostasis. They activate gene expression by regulating processing, stability, and activation of Gli/Cubitus interruptus (Ci) transcription factors. Hh proteins are secreted and spread through tissue, despite becoming covalently linked to sterol during processing. Multiple mechanisms have been proposed to release Hh proteins in distinct forms; in Drosophila, lipoproteins facilitate long-range Hh mobilization but also contain lipids that repress the pathway. Here, we show that mammalian lipoproteins have conserved roles in Sonic Hedgehog (Shh) release and pathway repression. We demonstrate that lipoprotein-associated forms of Hh and Shh specifically block lipoprotein-mediated pathway inhibition. We also identify a second conserved release form that is not sterol-modified and can be released independently of lipoproteins (Hh-N*/Shh-N*). Lipoprotein-associated Hh/Shh and Hh-N*/Shh-N* have complementary and synergistic functions. In Drosophila wing imaginal discs, lipoprotein-associated Hh increases the amount of full-length Ci, but is insufficient for target gene activation. However, small amounts of non-sterol-modified Hh synergize with lipoprotein-associated Hh to fully activate the pathway and allow target gene expression. The existence of Hh secretion forms with distinct signaling activities suggests a novel mechanism for generating a diversity of Hh responses.


Computational analysis of liquid chromatography-tandem mass spectrometric steroid profiling in NCI H295R cells following angiotensin II, forskolin and abiraterone treatment.

  • Anastasios Mangelis‎ et al.
  • The Journal of steroid biochemistry and molecular biology‎
  • 2016‎

Adrenal steroid hormones, which regulate a plethora of physiological functions, are produced via tightly controlled pathways. Investigations of these pathways, based on experimental data, can be facilitated by computational modeling for calculations of metabolic rate alterations. We therefore used a model system, based on mass balance and mass reaction equations, to kinetically evaluate adrenal steroidogenesis in human adrenal cortex-derived NCI H295R cells. For this purpose a panel of 10 steroids was measured by liquid chromatographic-tandem mass spectrometry. Time-dependent changes in cell incubate concentrations of steroids - including cortisol, aldosterone, dehydroepiandrosterone and their precursors - were measured after incubation with angiotensin II, forskolin and abiraterone. Model parameters were estimated based on experimental data using weighted least square fitting. Time-dependent angiotensin II- and forskolin-induced changes were observed for incubate concentrations of precursor steroids with peaks that preceded maximal increases in aldosterone and cortisol. Inhibition of 17-alpha-hydroxylase/17,20-lyase with abiraterone resulted in increases in upstream precursor steroids and decreases in downstream products. Derived model parameters, including rate constants of enzymatic processes, appropriately quantified observed and expected changes in metabolic pathways at multiple conversion steps. Our data demonstrate limitations of single time point measurements and the importance of assessing pathway dynamics in studies of adrenal cortical cell line steroidogenesis. Our analysis provides a framework for evaluation of steroidogenesis in adrenal cortical cell culture systems and demonstrates that computational modeling-derived estimates of kinetic parameters are an effective tool for describing perturbations in associated metabolic pathways.


Compensation for chronic oxidative stress in ALADIN null mice.

  • Ramona Jühlen‎ et al.
  • Biology open‎
  • 2018‎

Mutations in the AAAS gene coding for the nuclear pore complex protein ALADIN lead to the autosomal recessive disorder triple A syndrome. Triple A patients present with a characteristic phenotype including alacrima, achalasia and adrenal insufficiency. Patient fibroblasts show increased levels of oxidative stress, and several in vitro studies have demonstrated that the nucleoporin ALADIN is involved in both the cellular oxidative stress response and adrenal steroidogenesis. It is known that ALADIN knock-out mice lack a phenotype resembling human triple A syndrome. The objective of this study was to determine whether the application of chronic oxidative stress by ingestion of paraquat would generate a triple A-like phenotype in ALADIN null mice. Adult male mice were fed either a paraquat (0.25 g/kg diet) or control diet for 11 days. After application of chronic oxidative stress, ALADIN knock-out mice presented with an unexpected compensated glutathione metabolism, but lacked a phenotype resembling human triple A syndrome. We did not observe increased levels of oxidative stress and alterations in adrenal steroidogenesis in mice depleted for ALADIN. This study stresses the species-specific role of the nucleoporin ALADIN, which in mice involves a novel compensatory mechanism for regulating the cellular glutathione redox response.


High-Resolution Tissue Mass Spectrometry Imaging Reveals a Refined Functional Anatomy of the Human Adult Adrenal Gland.

  • Na Sun‎ et al.
  • Endocrinology‎
  • 2018‎

In the adrenal gland, neuroendocrine cells that synthesize catecholamines and epithelial cells that produce steroid hormones are united beneath a common organ capsule to function as a single stress-responsive organ. The functional anatomy of the steroid hormone-producing adrenal cortex and the catecholamine-producing medulla is ill defined at the level of small molecules. Here, we report a comprehensive high-resolution mass spectrometry imaging (MSI) map of the normal human adrenal gland. A large variety of biomolecules was accessible by matrix-assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance MSI, including nucleoside phosphates indicative of oxidative phosphorylation, sterol and steroid metabolites, intermediates of glycolysis and the tricarboxylic acid cycle, lipids, and fatty acids. Statistical clustering analyses yielded a molecularly defined adrenal anatomy of 10 distinct molecular zones including a highly structured corticomedullary interface. By incorporating pathway information, activities of carbohydrate, amino acid, and lipid metabolism as well as endocrine bioactivity were revealed to be highly spatially organized, which could be visualized as different molecularly defined zones. Together, these findings provide a molecular definition of human adult adrenal gland structure beyond classical histological anatomy.


Targeting Cyclooxygenase-2 in Pheochromocytoma and Paraganglioma: Focus on Genetic Background.

  • Martin Ullrich‎ et al.
  • Cancers‎
  • 2019‎

Cyclooxygenase 2 (COX-2) is a key enzyme of the tumorigenesis-inflammation interface and can be induced by hypoxia. A pseudohypoxic transcriptional signature characterizes pheochromocytomas and paragangliomas (PPGLs) of the cluster I, mainly represented by tumors with mutations in von Hippel-Lindau (VHL), endothelial PAS domain-containing protein 1 (EPAS1), or succinate dehydrogenase (SDH) subunit genes. The aim of this study was to investigate a possible association between underlying tumor driver mutations and COX-2 in PPGLs. COX-2 gene expression and immunoreactivity were examined in clinical specimens with documented mutations, as well as in spheroids and allografts derived from mouse pheochromocytoma (MPC) cells. COX-2 in vivo imaging was performed in allograft mice. We observed significantly higher COX-2 expression in cluster I, especially in VHL-mutant PPGLs, however, no specific association between COX-2 mRNA levels and a hypoxia-related transcriptional signature was found. COX-2 immunoreactivity was present in about 60% of clinical specimens as well as in MPC spheroids and allografts. A selective COX-2 tracer specifically accumulated in MPC allografts. This study demonstrates that, although pseudohypoxia is not the major determinant for high COX-2 levels in PPGLs, COX-2 is a relevant molecular target. This potentially allows for employing selective COX-2 inhibitors as targeted chemotherapeutic agents and radiosensitizers. Moreover, available models are suitable for preclinical testing of these treatments.


Combination of Lenvatinib and Pembrolizumab Is an Effective Treatment Option for Anaplastic and Poorly Differentiated Thyroid Carcinoma.

  • Christine Dierks‎ et al.
  • Thyroid : official journal of the American Thyroid Association‎
  • 2021‎

Background: Anaplastic thyroid carcinoma (ATC) and metastatic poorly differentiated thyroid carcinomas (PDTCs) are rare aggressive malignancies with poor overall survival (OS) despite extensive multimodal therapy. These tumors are highly proliferative, with frequently increased tumor mutational burden (TMB) compared with differentiated thyroid carcinomas, and elevated programmed death ligand 1 (PD-L1) levels. These tumor properties implicate responsiveness to antiangiogenic and antiproliferative multikinase inhibitors such as lenvatinib, and immune checkpoint inhibitors such as pembrolizumab. Patients and Methods: In a retrospective study, we analyzed six patients with metastatic ATC and two patients with PDTC, who received a combination therapy of lenvatinib and pembrolizumab. Lenvatinib was started at 14-24 mg daily and combined with pembrolizumab at a fixed dose of 200 mg every three weeks. Maximum treatment duration with this combination was 40 months, and 3 of 6 ATC patients are still on therapy. Patient tumors were characterized by whole-exome sequencing and PD-L1 expression levels (tumor proportion score [TPS] 1-90%). Results: Best overall response (BOR) within ATCs was 66% complete remissions (4/6 CR), 16% stable disease (1/6 SD), and 16% progressive disease (1/6 PD). BOR within PDTCs was partial remission (PR 2/2). The median progression-free survival was 17.75 months for all patients, and 16.5 months for ATCs, with treatment durations ranging from 1 to 40 months (1, 4, 11, 15, 19, 25, 27, and 40 months). Grade III/IV toxicities developed in 4 of 8 patients, requiring dose reduction/discontinuation of lenvatinib. The median OS was 18.5 months, with three ATC patients being still alive without relapse (40, 27, and 19 months) despite metastatic disease at the time of treatment initiation (UICC and stage IVC). All patients with long-term (>2 years) or complete responses (CRs) had either increased TMB or a PD-L1 TPS >50%. Conclusions: Our results implicate that the combination of lenvatinib and pembrolizumab might be safe and effective in patients with ATC/PDTC and can result in complete and long-term remissions. The combination treatment is now being systematically examined in a phase II clinical trial (Anaplastic Thyroid Carcinoma Lenvatinib Pembrolizumab [ATLEP]) in ATC/PDTC patients.


HIF1α is a direct regulator of steroidogenesis in the adrenal gland.

  • Deepika Watts‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2021‎

Endogenous steroid hormones, especially glucocorticoids and mineralocorticoids, derive from the adrenal cortex, and drastic or sustained changes in their circulatory levels affect multiple organ systems. Although hypoxia signaling in steroidogenesis has been suggested, knowledge on the true impact of the HIFs (Hypoxia-Inducible Factors) in the adrenocortical cells of vertebrates is scant. By creating a unique set of transgenic mouse lines, we reveal a prominent role for HIF1α in the synthesis of virtually all steroids in vivo. Specifically, mice deficient in HIF1α in adrenocortical cells displayed enhanced levels of enzymes responsible for steroidogenesis and a cognate increase in circulatory steroid levels. These changes resulted in cytokine alterations and changes in the profile of circulatory mature hematopoietic cells. Conversely, HIF1α overexpression resulted in the opposite phenotype of insufficient steroid production due to impaired transcription of necessary enzymes. Based on these results, we propose HIF1α to be a vital regulator of steroidogenesis as its modulation in adrenocortical cells dramatically impacts hormone synthesis with systemic consequences. In addition, these mice can have potential clinical significances as they may serve as essential tools to understand the pathophysiology of hormone modulations in a number of diseases associated with metabolic syndrome, auto-immunity or even cancer.


Insulin and obesity transform hypothalamic-pituitary-adrenal axis stemness and function in a hyperactive state.

  • Martin Werdermann‎ et al.
  • Molecular metabolism‎
  • 2021‎

Metabolic diseases are an increasing problem in society with the brain-metabolic axis as a master regulator of the human body for sustaining homeostasis under metabolic stress. However, metabolic inflammation and disease will trigger sustained activation of the hypothalamic-pituitary-adrenal axis. In this study, we investigated the role of metabolic stress on progenitor cells in the hypothalamic-pituitary-adrenal axis.


Effects of Germline CYP2W1*6 and CYP2B6*6 Single Nucleotide Polymorphisms on Mitotane Treatment in Adrenocortical Carcinoma: A Multicenter ENSAT Study.

  • Barbara Altieri‎ et al.
  • Cancers‎
  • 2020‎

Mitotane is the only approved drug for advanced adrenocortical carcinoma (ACC) and no biomarkers are available to predict attainment of therapeutic plasma concentrations and clinical response. Aim of the study was to evaluate the suitability of cytochrome P450(CYP)2W1 and CYP2B6 single nucleotide polymorphisms (SNPs) as biomarkers. A multicenter cohort study including 182 ACC patients (F/M = 121/61) treated with mitotane monotherapy after radical resection (group A, n = 103) or in not completely resectable, recurrent or advanced disease (group B, n = 79) was performed. CYP2W1*2, CYP2W1*6, CYP2B6*6 and CYP2B6 rs4803419 were genotyped in germline DNA. Mitotane blood levels were measured regularly. Response to therapy was evaluated as time to progression (TTP) and disease control rate (DCR). Among investigated SNPs, CYP2W1*6 and CYP2B6*6 correlated with mitotane treatment only in group B. Patients with CYP2W1*6 (n = 21) achieved less frequently therapeutic mitotane levels (>14 mg/L) than those with wild type (WT) allele (76.2% vs 51.7%, p = 0.051) and experienced shorter TTP (HR = 2.10, p = 0.019) and lower DCR (chi-square = 6.948, p = 0.008). By contrast, 55% of patients with CYP2B6*6 vs. 28.2% WT (p = 0.016) achieved therapeutic range. Combined, a higher rate of patients with CYP2W1*6WT+CYP2B6*6 (60.6%) achieved mitotane therapeutic range (p = 0.034). In not completely resectable, recurrent or advanced ACC, CYP2W1*6 SNP was associated with a reduced probability to reach mitotane therapeutic range and lower response rates, whereas CYP2B6*6 correlated with higher mitotane levels. The association of these SNPs may predict individual response to mitotane.


Sterol O-Acyl Transferase 1 as a Prognostic Marker of Adrenocortical Carcinoma.

  • Amanda Meneses Ferreira Lacombe‎ et al.
  • Cancers‎
  • 2020‎

Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with an unfavorable prognosis. Despite the poor prognosis in the majority of patients, no improvements in treatment strategies have been achieved. Therefore, the discovery of new prognostic biomarkers is of enormous interest. Sterol-O-acyl transferase 1 (SOAT1) is involved in cholesterol esterification and lipid droplet formation. Recently, it was demonstrated that SOAT1 inhibition leads to impaired steroidogenesis and cell viability in ACC. To date, no studies have addressed the impact of SOAT1 expression on ACC prognosis and clinical outcomes. We evaluated SOAT1 expression by quantitative real-time polymerase chain reaction and immunohistochemistry in a tissue microarray of 112 ACCs (Weiss score ≥ 3) from adults treated in a single tertiary center in Brazil. Two independent pathologists evaluated the immunohistochemistry results through a semiquantitative approach (0-4). We aimed to evaluate the correlation between SOAT1 expression and clinical, biochemical and anatomopathological parameters, recurrence-free survival (RFS), progression-free survival (PFS), and overall survival (OS). SOAT1 protein expression was heterogeneous in this cohort, 37.5% of the ACCs demonstrated a strong SOAT1 protein expression (score > 2), while 62.5% demonstrated a weak or absent protein expression (score ≤ 2). Strong SOAT1 protein expression correlated with features of high aggressiveness in ACC, such as excessive tumor cortisol secretion (p = 0.01), an advanced disease stage [European Network for the Study of Adrenal Tumors (ENSAT) staging system 3 and 4 (p = 0.011)] and a high Ki67 index (p = 0.002). In multivariate analysis, strong SOAT1 protein expression was an independent predictor of a reduced OS (hazard ratio (HR) 2.15, confidence interval (CI) 95% 1.26-3.66; p = 0.005) in all patients (n = 112), and a reduced RFS (HR 2.1, CI 95% 1.09-4.06; p = 0.027) in patients with localized disease at diagnosis (n = 83). Our findings demonstrated that SOAT1 protein expression has prognostic value in ACC and reinforced the importance of investigating SOAT1 as a possible therapeutic target for patients with ACC.


Glucocorticoid Excess in Patients with Pheochromocytoma Compared with Paraganglioma and Other Forms of Hypertension.

  • Georgiana Constantinescu‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2020‎

Catecholamines and adrenocortical steroids are important regulators of blood pressure. Bidirectional relationships between adrenal steroids and catecholamines have been established but whether this is relevant to patients with pheochromocytoma is unclear.


Adrenal Hormone Interactions and Metabolism: A Single Sample Multi-Omics Approach.

  • Nicole Bechmann‎ et al.
  • Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme‎
  • 2021‎

The adrenal gland is important for many physiological and pathophysiological processes, but studies are often restricted by limited availability of sample material. Improved methods for sample preparation are needed to facilitate analyses of multiple classes of adrenal metabolites and macromolecules in a single sample. A procedure was developed for preparation of chromaffin cells, mouse adrenals, and human chromaffin tumors that allows for multi-omics analyses of different metabolites and preservation of native proteins. To evaluate the new procedure, aliquots of samples were also prepared using conventional procedures. Metabolites were analyzed by liquid-chromatography with mass spectrometry or electrochemical detection. Metabolite contents of chromaffin cells and tissues analyzed with the new procedure were similar or even higher than with conventional methods. Catecholamine contents were comparable between both procedures. The TCA cycle metabolites, cis-aconitate, isocitate, and α-ketoglutarate were detected at higher concentrations in cells, while in tumor tissue only isocitrate and potentially fumarate were measured at higher contents. In contrast, in a broad untargeted metabolomics approach, a methanol-based preparation procedure of adrenals led to a 1.3-fold higher number of detected metabolites. The established procedure also allows for simultaneous investigation of adrenal hormones and related enzyme activities as well as proteins within a single sample. This novel multi-omics approach not only minimizes the amount of sample required and overcomes problems associated with tissue heterogeneity, but also provides a more complete picture of adrenal function and intra-adrenal interactions than previously possible.


Reassessment of Postural Stimulation Testing as a Simple Tool to Identify a Subgroup of Patients With Unilateral Primary Aldosteronism.

  • Carmina Teresa Fuss‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2022‎

Adrenal vein sampling (AVS) represents the current diagnostic gold standard for differentiation between unilateral and bilateral primary aldosteronism (PA). Postural stimulation testing (PST) has been used to provide additional diagnostic information.


Targeted Quantification of Carbon Metabolites Identifies Metabolic Progression Markers and an Undiagnosed Case of SDH-Deficient Clear Cell Renal Cell Carcinoma in a German Cohort.

  • Doreen William‎ et al.
  • Metabolites‎
  • 2021‎

Renal cell carcinoma (RCC) is among the 10 most common cancer entities and can be categorised into distinct subtypes by differential expression of Krebs cycle genes. We investigated the predictive value of several targeted metabolites with regards to tumour stages and patient survival in an unselected cohort of 420 RCCs. Unsupervised hierarchical clustering of metabolite ratios identified two main clusters separated by α-ketoglutarate (α-KG) levels and sub-clusters with differential levels of the oncometabolite 2-hydroxyglutarate (2HG). Sub-clusters characterised by high 2HG were enriched in higher tumour stages, suggesting metabolite profiles might be suitable predictors of tumour stage or survival. Bootstrap forest models based on single metabolite signatures showed that lactate, 2HG, citrate, aspartate, asparagine, and glutamine better predicted the cancer-specific survival (CSS) of clear cell RCC patients, whereas succinate and α-ketoglutarate were better CSS predictors for papillary RCC patients. Additionally, this assay identifies rare cases of tumours with SDHx mutations, which are caused predominantly by germline mutations and which predispose to development of different neoplasms. Hence, analysis of selected metabolites should be further evaluated for potential utility in liquid biopsies, which can be obtained using less invasive methods and potentially facilitate disease monitoring for both patients and caregivers.


Dexamethasone sensitizes to ferroptosis by glucocorticoid receptor-induced dipeptidase-1 expression and glutathione depletion.

  • Anne von Mässenhausen‎ et al.
  • Science advances‎
  • 2022‎

Dexamethasone is widely used as an immunosuppressive therapy and recently as COVID-19 treatment. Here, we demonstrate that dexamethasone sensitizes to ferroptosis, a form of iron-catalyzed necrosis, previously suggested to contribute to diseases such as acute kidney injury, myocardial infarction, and stroke, all of which are triggered by glutathione (GSH) depletion. GSH levels were significantly decreased by dexamethasone. Mechanistically, we identified that dexamethasone up-regulated the GSH metabolism regulating protein dipeptidase-1 (DPEP1) in a glucocorticoid receptor (GR)-dependent manner. DPEP1 knockdown reversed the phenotype of dexamethasone-induced ferroptosis sensitization. Ferroptosis inhibitors, the DPEP1 inhibitor cilastatin, or genetic DPEP1 inactivation reversed the dexamethasone-induced increase in tubular necrosis in freshly isolated renal tubules. Our data indicate that dexamethasone sensitizes to ferroptosis by a GR-mediated increase in DPEP1 expression and GSH depletion. Together, we identified a previously unknown mechanism of glucocorticoid-mediated sensitization to ferroptosis bearing clinical and therapeutic implications.


Developmental endothelial locus-1 protects from hypertension-induced cardiovascular remodeling via immunomodulation.

  • Theresa Failer‎ et al.
  • The Journal of clinical investigation‎
  • 2022‎

The causative role of inflammation in hypertension-related cardiovascular diseases is evident and calls for development of specific immunomodulatory therapies. We tested the therapeutic efficacy and mechanisms of action of developmental endothelial locus-1 (DEL-1), an endogenous antiinflammatory factor, in angiotensin II- (ANGII-) and deoxycorticosterone acetate-salt-induced (DOCA-salt-induced) cardiovascular organ damage and hypertension. By using mice with endothelial overexpression of DEL-1 (EC-Del1 mice) and performing preventive and interventional studies by injecting recombinant DEL-1 in mice, we showed that DEL-1 improved endothelial function and abrogated aortic adventitial fibrosis, medial thickening, and loss of elastin. DEL-1 also protected the mice from cardiac concentric hypertrophy and interstitial and perivascular coronary fibrosis and improved left ventricular function and myocardial coronary perfusion. DEL-1 prevented aortic stiffness and abolished the progression of hypertension. Mechanistically, DEL-1 acted by inhibiting αvβ3 integrin-dependent activation of pro-MMP2 in mice and in human isolated aorta. Moreover, DEL-1 stabilized αvβ3 integrin-dependent CD25+FoxP3+ Treg numbers and IL-10 levels, which were associated with decreased recruitment of inflammatory cells and reduced production of proinflammatory cytokines in cardiovascular organs. The demonstrated effects and immune-modulating mechanisms of DEL-1 in abrogation of cardiovascular remodeling and progression of hypertension identify DEL-1 as a potential therapeutic factor.


Predicting Hypertension Subtypes with Machine Learning Using Targeted Metabolites and Their Ratios.

  • Smarti Reel‎ et al.
  • Metabolites‎
  • 2022‎

Hypertension is a major global health problem with high prevalence and complex associated health risks. Primary hypertension (PHT) is most common and the reasons behind primary hypertension are largely unknown. Endocrine hypertension (EHT) is another complex form of hypertension with an estimated prevalence varying from 3 to 20% depending on the population studied. It occurs due to underlying conditions associated with hormonal excess mainly related to adrenal tumours and sub-categorised: primary aldosteronism (PA), Cushing's syndrome (CS), pheochromocytoma or functional paraganglioma (PPGL). Endocrine hypertension is often misdiagnosed as primary hypertension, causing delays in treatment for the underlying condition, reduced quality of life, and costly antihypertensive treatment that is often ineffective. This study systematically used targeted metabolomics and high-throughput machine learning methods to predict the key biomarkers in classifying and distinguishing the various subtypes of endocrine and primary hypertension. The trained models successfully classified CS from PHT and EHT from PHT with 92% specificity on the test set. The most prominent targeted metabolites and metabolite ratios for hypertension identification for different disease comparisons were C18:1, C18:2, and Orn/Arg. Sex was identified as an important feature in CS vs. PHT classification.


Metastatic pheochromocytoma and paraganglioma: Somatostatin receptor 2 expression, genetics and therapeutic responses.

  • Alessa Fischer‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2023‎

Pheochromocytomas/paragangliomas (PPGLs) with pathogenic mutations in the succinate dehydrogenase subunit B (SDHB) are associated with a high metastatic risk. Somatostatin receptor 2 (SSTR2)-dependent imaging is the most sensitive imaging modality for SDHB-related PPGLs, suggesting that SSTR2 expression is a significant cell surface therapeutic biomarker of such tumors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: