Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 73 papers

Activation of HIPK2 Promotes ER Stress-Mediated Neurodegeneration in Amyotrophic Lateral Sclerosis.

  • Sebum Lee‎ et al.
  • Neuron‎
  • 2016‎

Persistent accumulation of misfolded proteins causes endoplasmic reticulum (ER) stress, a prominent feature in many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Here we report the identification of homeodomain interacting protein kinase 2 (HIPK2) as the essential link that promotes ER-stress-induced cell death via the IRE1α-ASK1-JNK pathway. ER stress, induced by tunicamycin or SOD1(G93A), activates HIPK2 by phosphorylating highly conserved serine and threonine residues (S359/T360) within the activation loop of the HIPK2 kinase domain. In SOD1(G93A) mice, loss of HIPK2 delays disease onset, reduces cell death in spinal motor neurons, mitigates glial pathology, and improves survival. Remarkably, HIPK2 activation positively correlates with TDP-43 proteinopathy in NEFH-tTA/tetO-hTDP-43ΔNLS mice, sporadic ALS and C9ORF72 ALS, and blocking HIPK2 kinase activity protects motor neurons from TDP-43 cytotoxicity. These results reveal a previously unrecognized role of HIPK2 activation in ER-stress-mediated neurodegeneration and its potential role as a biomarker and therapeutic target for ALS. VIDEO ABSTRACT.


N-terminal syndecan-2 domain selectively enhances 6-O heparan sulfate chains sulfation and promotes VEGFA165-dependent neovascularization.

  • Federico Corti‎ et al.
  • Nature communications‎
  • 2019‎

The proteoglycan Syndecan-2 (Sdc2) has been implicated in regulation of cytoskeleton organization, integrin signaling and developmental angiogenesis in zebrafish. Here we report that mice with global and inducible endothelial-specific deletion of Sdc2 display marked angiogenic and arteriogenic defects and impaired VEGFA165 signaling. No such abnormalities are observed in mice with deletion of the closely related Syndecan-4 (Sdc4) gene. These differences are due to a significantly higher 6-O sulfation level in Sdc2 versus Sdc4 heparan sulfate (HS) chains, leading to an increase in VEGFA165 binding sites and formation of a ternary Sdc2-VEGFA165-VEGFR2 complex which enhances VEGFR2 activation. The increased Sdc2 HS chains 6-O sulfation is driven by a specific N-terminal domain sequence; the insertion of this sequence in Sdc4 N-terminal domain increases 6-O sulfation of its HS chains and promotes Sdc2-VEGFA165-VEGFR2 complex formation. This demonstrates the existence of core protein-determined HS sulfation patterns that regulate specific biological activities.


The Robo4 cytoplasmic domain is dispensable for vascular permeability and neovascularization.

  • Feng Zhang‎ et al.
  • Nature communications‎
  • 2016‎

Vascular permeability and neovascularization are implicated in many diseases including retinopathies and diabetic wound healing. Robo4 is an endothelial-specific transmembrane receptor that stabilizes the vasculature, as shown in Robo4-/- mice that develop hyperpermeability, but how Robo4 signals remained unclear. Here we show that Robo4 deletion enhances permeability and revascularization in oxygen-induced retinopathy (OIR) and accelerates cutaneous wound healing. To determine Robo4 signalling pathways, we generated transgenic mice expressing a truncated Robo4 lacking the cytoplasmic domain (Robo4ΔCD). Robo4ΔCD expression is sufficient to prevent permeability, and inhibits OIR revascularization and wound healing in Robo4-/- mice. Mechanistically, Robo4 does not affect Slit2 signalling, but Robo4 and Robo4ΔCD counteract Vegfr2-Y949 (Y951 in human VEGFR2) phosphorylation by signalling through the endothelial UNC5B receptor. We conclude that Robo4 inhibits angiogenesis and vessel permeability independently of its cytoplasmic domain, while activating VEGFR2-Y951 via ROBO4 inhibition might accelerate tissue revascularization in retinopathy of prematurity and in diabetic patients.


PKN1 Directs Polarized RAB21 Vesicle Trafficking via RPH3A and Is Important for Neutrophil Adhesion and Ischemia-Reperfusion Injury.

  • Qianying Yuan‎ et al.
  • Cell reports‎
  • 2017‎

Polarized vesicle transport plays an important role in cell polarization, but the mechanisms underlying this process and its role in innate immune responses are not well understood. Here, we describe a phosphorylation-regulated polarization mechanism that is important for neutrophil adhesion to endothelial cells during inflammatory responses. We show that the protein kinase PKN1 phosphorylates RPH3A, which enhances binding of RPH3A to guanosine triphosphate (GTP)-bound RAB21. These interactions are important for polarized localization of RAB21 and RPH3A in neutrophils, which leads to PIP5K1C90 polarization. Consistent with the roles of PIP5K1C90 polarization, the lack of PKN1 or RPH3A impairs neutrophil integrin activation, adhesion to endothelial cells, and infiltration in inflammatory models. Furthermore, myeloid-specific loss of PKN1 decreases tissue injury in a renal ischemia-reperfusion model. Thus, this study characterizes a mechanism for protein polarization in neutrophils and identifies a potential protein kinase target for therapeutic intervention in reperfusion-related tissue injury.


Extracellular vesicles are independent metabolic units with asparaginase activity.

  • Nunzio Iraci‎ et al.
  • Nature chemical biology‎
  • 2017‎

Extracellular vesicles (EVs) are membrane particles involved in the exchange of a broad range of bioactive molecules between cells and the microenvironment. Although it has been shown that cells can traffic metabolic enzymes via EVs, much remains to be elucidated with regard to their intrinsic metabolic activity. Accordingly, herein we assessed the ability of neural stem/progenitor cell (NSC)-derived EVs to consume and produce metabolites. Our metabolomics and functional analyses both revealed that EVs harbor L-asparaginase activity, catalyzed by the enzyme asparaginase-like protein 1 (Asrgl1). Critically, we show that Asrgl1 activity is selective for asparagine and is devoid of glutaminase activity. We found that mouse and human NSC EVs traffic Asrgl1. Our results demonstrate, for the first time, that NSC EVs function as independent metabolic units that are able to modify the concentrations of critical nutrients, with the potential to affect the physiology of their microenvironment.


Two genetic variants of CD38 in subjects with autism spectrum disorder and controls.

  • Toshio Munesue‎ et al.
  • Neuroscience research‎
  • 2010‎

The neurobiological basis of autism spectrum disorder (ASD) remains poorly understood. Given the role of CD38 in social recognition through oxytocin (OT) release, we hypothesized that CD38 may play a role in the etiology of ASD. Here, we first examined the immunohistochemical expression of CD38 in the hypothalamus of post-mortem brains of non-ASD subjects and found that CD38 was colocalized with OT in secretory neurons. In studies of the association between CD38 and autism, we analyzed 10 single nucleotide polymorphisms (SNPs) and mutations of CD38 by re-sequencing DNAs mainly from a case-control study in Japan, and Caucasian cases mainly recruited to the Autism Genetic Resource Exchange (AGRE). The SNPs of CD38, rs6449197 (p<0.040) and rs3796863 (p<0.005) showed significant associations with a subset of ASD (IQ>70; designated as high-functioning autism (HFA)) in the U.S. 104 AGRE family trios, but not with Japanese 188 HFA subjects. A mutation that caused tryptophan to replace arginine at amino acid residue 140 (R140W; (rs1800561, 4693C>T)) was found in 0.6-4.6% of the Japanese population and was associated with ASD in the smaller case-control study. The SNP was clustered in pedigrees in which the fathers and brothers of T-allele-carrier probands had ASD or ASD traits. In this cohort OT plasma levels were lower in subjects with the T allele than in those without. One proband with the T allele who was taking nasal OT spray showed relief of symptoms. The two variant CD38 poloymorphysms tested may be of interest with regard of the pathophysiology of ASD.


Wnt-Dependent Oligodendroglial-Endothelial Interactions Regulate White Matter Vascularization and Attenuate Injury.

  • Manideep Chavali‎ et al.
  • Neuron‎
  • 2020‎

Recent studies have indicated oligodendroglial-vascular crosstalk during brain development, but the underlying mechanisms are incompletely understood. We report that oligodendrocyte precursor cells (OPCs) contact sprouting endothelial tip cells in mouse, ferret, and human neonatal white matter. Using transgenic mice, we show that increased or decreased OPC density results in cognate changes in white matter vascular investment. Hypoxia induced increases in OPC numbers, vessel density and endothelial cell expression of the Wnt pathway targets Apcdd1 and Axin2 in white matter, suggesting paracrine OPC-endothelial signaling. Conditional knockout of OPC Wntless resulted in diminished white matter vascular growth in normoxia, whereas loss of Wnt7a/b function blunted the angiogenic response to hypoxia, resulting in severe white matter damage. These findings indicate that OPC-endothelial cell interactions regulate neonatal white matter vascular development in a Wnt-dependent manner and further suggest this mechanism is important in attenuating hypoxic injury.


Fibronectin-Mediated Inflammatory Signaling Through Integrin α5 in Vascular Remodeling.

  • Madhusudhan Budatha‎ et al.
  • Journal of the American Heart Association‎
  • 2021‎

Background Adhesion of vascular endothelial cells to the underlying basement membrane potently modulates endothelial cells to cells' inflammatory activation. The normal basement membrane proteins laminin and collagen IV attenuate inflammatory signaling in part through integrin α2β1. In contrast, fibronectin, the provisional matrix protein found in injured, remodeling or inflamed vessels, sensitizes endothelial cells to inflammatory stimuli through integrins α5β1and and αvβ3. A chimeric integrin in which the cytoplasmic domain of α5 is replaced with that of α2 pairs with β1 and binds fibronectin but signals like α2β1. Methods and Results Here, we examined mice in which integrin α5 is replaced with the α5/2 chimera, using the transverse aortic constriction and partial carotid ligation models of vessel remodeling. Following transverse aortic constriction and partial carotid ligation surgery, wild-type mice showed increased fibronectin deposition and expression of inflammatory markers, which were strongly attenuated in a5/2 mice. α5/2 mice also showed reduced artery wall hypertrophy in the transverse aortic constriction model and diminished inward remodeling in the partial carotid ligation model. Acute atherosclerosis after partial carotid ligation in hyperlipidemic ApoE-/- mice on a high fat diet was dramatically decreased in α5/2 mice. Conclusions Fibronectin and integrin α5 signaling is a key element of pathological vascular remodeling in acute models of both hypertension and disturbed flow. These results underscore the key role for integrin α5 signaling in pathological vascular remodeling associated with hypertension and atherosclerosis and support its potential as a therapeutic target.


Computed tomography imaging of macrophage phagocytic activity in abdominal aortic aneurysm.

  • Jakub Toczek‎ et al.
  • Theranostics‎
  • 2021‎

Inflammation plays a major role in the pathogenesis of several vascular pathologies, including abdominal aortic aneurysm (AAA). Evaluating the role of inflammation in AAA pathobiology and potentially outcome in vivo requires non-invasive tools for high-resolution imaging. We investigated the feasibility of X-ray computed tomography (CT) imaging of phagocytic activity using nanoparticle contrast agents to predict AAA outcome. Methods: Uptake of several nanoparticle CT contrast agents was evaluated in a macrophage cell line. The most promising agent, Exitron nano 12000, was further characterized in vitro and used for subsequent in vivo testing. AAA was induced in Apoe-/- mice through angiotensin II (Ang II) infusion for up to 4 weeks. Nanoparticle biodistribution and uptake in AAA were evaluated by CT imaging in Ang II-infused Apoe-/- mice. After imaging, the aortic tissue was harvested and used from morphometry, transmission electron microscopy and gene expression analysis. A group of Ang II-infused Apoe-/- mice underwent nanoparticle-enhanced CT imaging within the first week of Ang II infusion, and their survival and aortic external diameter were evaluated at 4 weeks to address the value of vessel wall CT enhancement in predicting AAA outcome. Results: Exitron nano 12000 showed specific uptake in macrophages in vitro. Nanoparticle accumulation was observed by CT imaging in tissues rich in mononuclear phagocytes. Aortic wall enhancement was detectable on delayed CT images following nanoparticle administration and correlated with vessel wall CD68 expression. Transmission electron microscopy ascertained the presence of nanoparticles in AAA adventitial macrophages. Nanoparticle-induced CT enhancement on images obtained within one week of AAA induction was predictive of AAA outcome at 4 weeks. Conclusions: By establishing the feasibility of CT-based molecular imaging of phagocytic activity in AAA, this study links the inflammatory signal on early time point images to AAA evolution. This readily available technology overcomes an important barrier to cross-sectional, longitudinal and outcome studies, not only in AAA, but also in other cardiovascular pathologies and facilitates the evaluation of modulatory interventions, and ultimately upon clinical translation, patient management.


Granulin loss of function in human mature brain organoids implicates astrocytes in TDP-43 pathology.

  • Martina de Majo‎ et al.
  • Stem cell reports‎
  • 2023‎

Loss of function (LoF) of TAR-DNA binding protein 43 (TDP-43) and mis-localization, together with TDP-43-positive and hyperphosphorylated inclusions, are found in post-mortem tissue of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients, including those carrying LoF variants in the progranulin gene (GRN). Modeling TDP-43 pathology has been challenging in vivo and in vitro. We present a three-dimensional induced pluripotent stem cell (iPSC)-derived paradigm-mature brain organoids (mbOrg)-composed of cortical-like-astrocytes (iA) and neurons. When devoid of GRN, mbOrgs spontaneously recapitulate TDP-43 mis-localization, hyperphosphorylation, and LoF phenotypes. Mixing and matching genotypes in mbOrgs showed that GRN-/- iA are drivers for TDP-43 pathology. Finally, we rescued TDP-43 LoF by adding exogenous progranulin, demonstrating a link between TDP-43 LoF and progranulin expression. In conclusion, we present an iPSC-derived platform that shows striking features of human TDP-43 proteinopathy and provides a tool for the mechanistic modeling of TDP-43 pathology and patient-tailored therapeutic screening for FTD and ALS.


Protracted neuronal recruitment in the temporal lobes of young children.

  • Marcos Assis Nascimento‎ et al.
  • Nature‎
  • 2024‎

The temporal lobe of the human brain contains the entorhinal cortex (EC). This region of the brain is a highly interconnected integrative hub for sensory and spatial information; it also has a key role in episodic memory formation and is the main source of cortical hippocampal inputs1-4. The human EC continues to develop during childhood5, but neurogenesis and neuronal migration to the EC are widely considered to be complete by birth. Here we show that the human temporal lobe contains many young neurons migrating into the postnatal EC and adjacent regions, with a large tangential stream persisting until the age of around one year and radial dispersal continuing until around two to three years of age. By contrast, we found no equivalent postnatal migration in rhesus macaques (Macaca mulatta). Immunostaining and single-nucleus RNA sequencing of ganglionic eminence germinal zones, the EC stream and the postnatal EC revealed that most migrating cells in the EC stream are derived from the caudal ganglionic eminence and become LAMP5+RELN+ inhibitory interneurons. These late-arriving interneurons could continue to shape the processing of sensory and spatial information well into postnatal life, when children are actively interacting with their environment. The EC is one of the first regions of the brain to be affected in Alzheimer's disease, and previous work has linked cognitive decline to the loss of LAMP5+RELN+ cells6,7. Our investigation reveals that many of these cells arrive in the EC through a major postnatal migratory stream in early childhood.


Index sorting resolves heterogeneous murine hematopoietic stem cell populations.

  • Reiner Schulte‎ et al.
  • Experimental hematology‎
  • 2015‎

Recent advances in the cellular and molecular biology of single stem cells have uncovered significant heterogeneity in the functional properties of stem cell populations. This has prompted the development of approaches to study single cells in isolation, often performed using multiparameter flow cytometry. However, many stem cell populations are too rare to test all possible cell surface marker combinations, and virtually nothing is known about functional differences associated with varying intensities of such markers. Here we describe the use of index sorting for further resolution of the flow cytometric isolation of single murine hematopoietic stem cells (HSCs). Specifically, we associate single-cell functional assay outcomes with distinct cell surface marker expression intensities. High levels of both CD150 and EPCR associate with delayed kinetics of cell division and low levels of differentiation. Moreover, cells that do not form single HSC-derived clones appear in the 7AAD(dim) fraction, suggesting that even low levels of 7AAD staining are indicative of less healthy cell populations. These data indicate that when used in combination with single-cell functional assays, index sorting is a powerful tool for refining cell isolation strategies. This approach can be broadly applied to other single-cell systems, both to improve isolation and to acquire additional cell surface marker information.


ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP.

  • Shuying Sun‎ et al.
  • Nature communications‎
  • 2015‎

The RNA-binding protein FUS/TLS, mutation in which is causative of the fatal motor neuron disease amyotrophic lateral sclerosis (ALS), is demonstrated to directly bind to the U1-snRNP and SMN complexes. ALS-causative mutations in FUS/TLS are shown to abnormally enhance their interaction with SMN and dysregulate its function, including loss of Gems and altered levels of small nuclear RNAs. The same mutants are found to have reduced association with U1-snRNP. Correspondingly, global RNA analysis reveals a mutant-dependent loss of splicing activity, with ALS-linked mutants failing to reverse changes caused by loss of wild-type FUS/TLS. Furthermore, a common FUS/TLS mutant-associated RNA splicing signature is identified in ALS patient fibroblasts. Taken together, these studies establish potentially converging disease mechanisms in ALS and spinal muscular atrophy, with ALS-causative mutants acquiring properties representing both gain (dysregulation of SMN) and loss (reduced RNA processing mediated by U1-snRNP) of function.


Expression of A20 by dendritic cells preserves immune homeostasis and prevents colitis and spondyloarthritis.

  • Gianna Elena Hammer‎ et al.
  • Nature immunology‎
  • 2011‎

Dendritic cells (DCs), which are known to support immune activation during infection, may also regulate immune homeostasis in resting animals. Here we show that mice lacking the ubiquitin-editing molecule A20 specifically in DCs spontaneously showed DC activation and population expansion of activated T cells. Analysis of DC-specific epistasis in compound mice lacking both A20 and the signaling adaptor MyD88 specifically in DCs showed that A20 restricted both MyD88-independent signals, which drive activation of DCs and T cells, and MyD88-dependent signals, which drive population expansion of T cells. In addition, mice lacking A20 specifically in DCs spontaneously developed lymphocyte-dependent colitis, seronegative ankylosing arthritis and enthesitis, conditions stereotypical of human inflammatory bowel disease (IBD). Our findings indicate that DCs need A20 to preserve immune quiescence and suggest that A20-dependent DC functions may underlie IBD and IBD-associated arthritides.


Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function.

  • Stefano Pluchino‎ et al.
  • PloS one‎
  • 2009‎

The systemic injection of neural stem/precursor cells (NPCs) provides remarkable amelioration of the clinico-pathological features of experimental autoimmune encephalomyelitis (EAE). This is dependent on the capacity of transplanted NPCs to engage concurrent mechanisms of action within specific microenvironments in vivo. Among a wide range of therapeutic actions alternative to cell replacement, neuroprotective and immune modulatory capacities of transplanted NPCs have been described. However, lacking is a detailed understanding of the mechanisms by which NPCs exert their therapeutic plasticity. This study was designed to identify the first candidate that exemplifies and sustains the immune modulatory capacity of transplanted NPCs.


Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons.

  • Amandine Berthet‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2014‎

Disruptions in mitochondrial dynamics may contribute to the selective degeneration of dopamine (DA) neurons in Parkinson's disease (PD). However, little is known about the normal functions of mitochondrial dynamics in these neurons, especially in axons where degeneration begins, and this makes it difficult to understand the disease process. To study one aspect of mitochondrial dynamics-mitochondrial fission-in mouse DA neurons, we deleted the central fission protein dynamin-related protein 1 (Drp1). Drp1 loss rapidly eliminates the DA terminals in the caudate-putamen and causes cell bodies in the midbrain to degenerate and lose α-synuclein. Without Drp1, mitochondrial mass dramatically decreases, especially in axons, where the mitochondrial movement becomes uncoordinated. However, in the ventral tegmental area (VTA), a subset of midbrain DA neurons characterized by small hyperpolarization-activated cation currents (Ih) is spared, despite near complete loss of their axonal mitochondria. Drp1 is thus critical for targeting mitochondria to the nerve terminal, and a disruption in mitochondrial fission can contribute to the preferential death of nigrostriatal DA neurons.


Immature excitatory neurons develop during adolescence in the human amygdala.

  • Shawn F Sorrells‎ et al.
  • Nature communications‎
  • 2019‎

The human amygdala grows during childhood, and its abnormal development is linked to mood disorders. The primate amygdala contains a large population of immature neurons in the paralaminar nuclei (PL), suggesting protracted development and possibly neurogenesis. Here we studied human PL development from embryonic stages to adulthood. The PL develops next to the caudal ganglionic eminence, which generates inhibitory interneurons, yet most PL neurons express excitatory markers. In children, most PL cells are immature (DCX+PSA-NCAM+), and during adolescence many transition into mature (TBR1+VGLUT2+) neurons. Immature PL neurons persist into old age, yet local progenitor proliferation sharply decreases in infants. Using single nuclei RNA sequencing, we identify the transcriptional profile of immature excitatory neurons in the human amygdala between 4-15 years. We conclude that the human PL contains excitatory neurons that remain immature for decades, a possible substrate for persistent plasticity at the interface of the hippocampus and amygdala.


Inhibition of sphingolipid synthesis improves outcomes and survival in GARP mutant wobbler mice, a model of motor neuron degeneration.

  • Constance S Petit‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

Numerous mutations that impair retrograde membrane trafficking between endosomes and the Golgi apparatus lead to neurodegenerative diseases. For example, mutations in the endosomal retromer complex are implicated in Alzheimer's and Parkinson's diseases, and mutations of the Golgi-associated retrograde protein (GARP) complex cause progressive cerebello-cerebral atrophy type 2 (PCCA2). However, how these mutations cause neurodegeneration is unknown. GARP mutations in yeast, including one causing PCCA2, result in sphingolipid abnormalities and impaired cell growth that are corrected by treatment with myriocin, a sphingolipid synthesis inhibitor, suggesting that alterations in sphingolipid metabolism contribute to cell dysfunction and death. Here we tested this hypothesis in wobbler mice, a murine model with a homozygous partial loss-of-function mutation in Vps54 (GARP protein) that causes motor neuron disease. Cytotoxic sphingoid long-chain bases accumulated in embryonic fibroblasts and spinal cords from wobbler mice. Remarkably, chronic treatment of wobbler mice with myriocin markedly improved their wellness scores, grip strength, neuropathology, and survival. Proteomic analyses of wobbler fibroblasts revealed extensive missorting of lysosomal proteins, including sphingolipid catabolism enzymes, to the Golgi compartment, which may contribute to the sphingolipid abnormalities. Our findings establish that altered sphingolipid metabolism due to GARP mutations contributes to neurodegeneration and suggest that inhibiting sphingolipid synthesis might provide a useful strategy for treating these disorders.


Response mechanism of ♀ Epinephelus fuscoguttatus × ♂ Epinephelus lanceolatus under low-temperature and waterless stresses using TMT proteomic analysis.

  • Xiuping Fan‎ et al.
  • Protoplasma‎
  • 2022‎

♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatus, a hybrid grouper created from artificial breeding, has been widely developed over the past decades. However, the study focusing on lukewarm high-protein-content fish species using advanced techniques has rarely been reported. In this work, the TMT (tandem mass tag)-assisted technique was employed to explore its differentially expressed proteins and response mechanisms under low-temperature dormant and waterless stresses. Our findings suggest that 162 and 258 differentially expressed proteins were identified under low-temperature dormant and waterless stresses, respectively. The waterless preservation treatment further identifies 93 differentially expressed proteins. The identified proteins are categorized and found to participate in lipid metabolism, glycometabolism, oxidative stress, immune response, protein and amino acid metabolism, signal transduction, and other functions. Accordingly, the factors that affect the response mechanisms are highlighted to provide new evidences at protein level.


Label-retention expansion microscopy.

  • Xiaoyu Shi‎ et al.
  • The Journal of cell biology‎
  • 2021‎

Expansion microscopy (ExM) increases the effective resolving power of any microscope by expanding the sample with swellable hydrogel. Since its invention, ExM has been successfully applied to a wide range of cell, tissue, and animal samples. Still, fluorescence signal loss during polymerization and digestion limits molecular-scale imaging using ExM. Here, we report the development of label-retention ExM (LR-ExM) with a set of trifunctional anchors that not only prevent signal loss but also enable high-efficiency labeling using SNAP and CLIP tags. We have demonstrated multicolor LR-ExM for a variety of subcellular structures. Combining LR-ExM with superresolution stochastic optical reconstruction microscopy (STORM), we have achieved molecular resolution in the visualization of polyhedral lattice of clathrin-coated pits in situ.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: