Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Patient-Derived Xenografts for Prognostication and Personalized Treatment for Head and Neck Squamous Cell Carcinoma.

  • Christina Karamboulas‎ et al.
  • Cell reports‎
  • 2018‎

Overall survival remains very poor for patients diagnosed as having head and neck squamous cell carcinoma (HNSCC). Identification of additional biomarkers and novel therapeutic strategies are important for improving patient outcomes. Patient-derived xenografts (PDXs), generated by implanting fresh tumor tissue directly from patients into immunodeficient mice, recapitulate many of the features of their corresponding clinical cancers, including histopathological and molecular profiles. Using a large collection of PDX models of HNSCC, we demonstrate that rapid engraftment into immunocompromised mice is highly prognostic and show that genomic deregulation of the G1/S checkpoint pathway correlates with engraftment. Furthermore, CCND1 and CDKN2A genomic alterations are predictive of response to the CDK4and CDK6 inhibitor abemaciclib. Overall, our study supports the pursuit of CDK4 and CDK6 inhibitors as a therapeutic strategy for a substantial proportion of HNSCC patients and demonstrates the potential of using PDX models to identify targeted therapies that will benefit patients who have the poorest outcomes.


MicroRNA-193b enhances tumor progression via down regulation of neurofibromin 1.

  • Michelle Lenarduzzi‎ et al.
  • PloS one‎
  • 2013‎

Despite improvements in therapeutic approaches for head and neck squamous cell carcinomas (HNSCC), clinical outcome has remained disappointing, with 5-year overall survival rates hovering around 40-50%, underscoring an urgent need to better understand the biological bases of this disease. We chose to address this challenge by studying the role of micro-RNAs (miRNAs) in HNSCC. MiR-193b was identified as an over-expressed miRNA from global miRNA profiling studies previously conducted in our lab, and confirmed in HNSCC cell lines. In vitro knockdown of miR-193b in FaDu cancer cells substantially reduced cell proliferation, migration and invasion, along with suppressed tumour formation in vivo. By integrating in silico prediction algorithms with in vitro experimental mRNA profilings, plus mRNA expression data of clinical specimens, neurofibromin 1 (NF1) was identified to be a target of miR-193b. Concordantly, miR-193b knockdown decreased NF1 transcript and protein levels significantly. Luciferase reporter assays confirmed the direct interaction of miR-193b with NF1. Moreover, p-ERK, a downstream target of NF1 was also suppressed after miR-193b knockdown. FaDu cells treated with a p-ERK inhibitor (U0126) phenocopied the reduced cell proliferation, migration and invasion observed with miR-193b knockdown. Finally, HNSCC patients whose tumours expressed high levels of miR-193b experienced a lower disease-free survival compared to patients with low miR-193b expression. Our findings identified miR-193b as a potentially novel prognostic marker in HNSCC that drives tumour progression via down-regulating NF1, in turn leading to activation of ERK, resulting in proliferation, migration, invasion, and tumour formation.


Privacy-preserving distributed learning of radiomics to predict overall survival and HPV status in head and neck cancer.

  • Marta Bogowicz‎ et al.
  • Scientific reports‎
  • 2020‎

A major challenge in radiomics is assembling data from multiple centers. Sharing data between hospitals is restricted by legal and ethical regulations. Distributed learning is a technique, enabling training models on multicenter data without data leaving the hospitals ("privacy-preserving" distributed learning). This study tested feasibility of distributed learning of radiomics data for prediction of two year overall survival and HPV status in head and neck cancer (HNC) patients. Pretreatment CT images were collected from 1174 HNC patients in 6 different cohorts. 981 radiomic features were extracted using Z-Rad software implementation. Hierarchical clustering was performed to preselect features. Classification was done using logistic regression. In the validation dataset, the receiver operating characteristics (ROC) were compared between the models trained in the centralized and distributed manner. No difference in ROC was observed with respect to feature selection. The logistic regression coefficients were identical between the methods (absolute difference <10-7). In comparison of the full workflow (feature selection and classification), no significant difference in ROC was found between centralized and distributed models for both studied endpoints (DeLong p > 0.05). In conclusion, both feature selection and classification are feasible in a distributed manner using radiomics data, which opens new possibility for training more reliable radiomics models.


Identification of a microRNA signature associated with risk of distant metastasis in nasopharyngeal carcinoma.

  • Jeff P Bruce‎ et al.
  • Oncotarget‎
  • 2015‎

Despite significant improvement in locoregional control in the contemporary era of nasopharyngeal carcinoma (NPC) treatment, patients still suffer from a significant risk of distant metastasis (DM). Identifying those patients at risk of DM would aid in personalized treatment in the future. MicroRNAs (miRNAs) play many important roles in human cancers; hence, we proceeded to address the primary hypothesis that there is a miRNA expression signature capable of predicting DM for NPC patients.


Pre-clinical characterization of Dacomitinib (PF-00299804), an irreversible pan-ErbB inhibitor, combined with ionizing radiation for head and neck squamous cell carcinoma.

  • Justin P Williams‎ et al.
  • PloS one‎
  • 2014‎

Epidermal growth factor receptor (EGFR) is over-expressed in nearly all cases of squamous cell carcinoma of the head and neck (SCCHN), and is an important driver of disease progression. EGFR targeted therapies have demonstrated clinical benefit for SCCHN treatment. In this report, we investigated the pre-clinical efficacy of Dacomitinib (PF-00299804), an irreversible pan-ErbB inhibitor, both alone and in combination with ionizing radiation (IR), a primary curative modality for SCCHN. One normal oral epithelial (NOE) and three SCCHN (FaDu, UT-SCC-8, UT-SCC-42a) cell lines were used to conduct cell viability, clonogenic survival, cell cycle, and immunoblotting assays in vitro, using increasing doses of Dacomitinib (10-500 nM), both with and without IR (2-4 Gy). The FaDu xenograft model was utilized for tumor growth delay assays in vivo, and immunohistochemical analyses were conducted on extracted tumors. A dose-dependent reduction in cell viability and clonogenic survival after Dacomitinib treatment was observed in all three SCCHN models. Treatment led to a significant reduction in EGFR signalling, with a subsequent decrease in phosphorylation of downstream targets such as ERK, AKT, and mTOR. In vivo, Dacomitinib treatment delayed tumor growth, while decreasing phospho-EGFR and Ki-67 immunoexpression. These effects were further enhanced when combined with IR, both in vitro and in vivo. The preclinical data support the further evaluations of Dacomitinib combined with IR for the future management of patients with SCCHN.


Site-Specific Variation in Radiomic Features of Head and Neck Squamous Cell Carcinoma and Its Impact on Machine Learning Models.

  • Xiaoyang Liu‎ et al.
  • Cancers‎
  • 2021‎

Current radiomic studies of head and neck squamous cell carcinomas (HNSCC) are typically based on datasets combining tumors from different locations, assuming that the radiomic features are similar based on histopathologic characteristics. However, molecular pathogenesis and treatment in HNSCC substantially vary across different tumor sites. It is not known if a statistical difference exists between radiomic features from different tumor sites and how they affect machine learning model performance in endpoint prediction. To answer these questions, we extracted radiomic features from contrast-enhanced neck computed tomography scans (CTs) of 605 patients with HNSCC originating from the oral cavity, oropharynx, and hypopharynx/larynx. The difference in radiomic features of tumors from these sites was assessed using statistical analyses and Random Forest classifiers on the radiomic features with 10-fold cross-validation to predict tumor sites, nodal metastasis, and HPV status. We found statistically significant differences (p-value ≤ 0.05) between the radiomic features of HNSCC depending on tumor location. We also observed that differences in quantitative features among HNSCC from different locations impact the performance of machine learning models. This suggests that radiomic features may reveal biologic heterogeneity complementary to current gold standard histopathologic evaluation. We recommend considering tumor site in radiomic studies of HNSCC.


Prognostic Factors for Overall Survival in Nasopharyngeal Cancer and Implication for TNM Staging by UICC: A Systematic Review of the Literature.

  • Chi Leung Chiang‎ et al.
  • Frontiers in oncology‎
  • 2021‎

This study aims to identify prognostic factors in nasopharyngeal carcinoma (NPC) to improve the current 8th edition TNM classification. A systematic review of the literature reported between 2013 and 2019 in PubMed, Embase, and Scopus was conducted. Studies were included if (1) original clinical studies, (2) ≥50 NPC patients, and (3) analyses on the association between prognostic factors and overall survival. The data elements of eligible studies were abstracted and analyzed. A level of evidence was synthesized for each suggested change to the TNM staging and prognostic factors. Of 5,595 studies screened, 108 studies (44 studies on anatomical criteria and 64 on non-anatomical factors) were selected. Proposed changes/factors with strong evidence included the upstaging paranasal sinus to T4, defining parotid lymph node as N3, upstaging N-category based on presence of lymph node necrosis, as well as the incorporation of non-TNM factors including EBV-DNA level, primary gross tumor volume (GTV), nodal GTV, neutrophil-lymphocyte ratio, lactate dehydrogenase, C-reactive protein/albumin ratio, platelet count, SUVmax of the primary tumor, and total lesion glycolysis. This systematic review provides a useful summary of suggestions and prognostic factors that potentially improve the current staging system. Further validation studies are warranted to confirm their significance.


Prognostic microRNAs modulate the RHO adhesion pathway: A potential therapeutic target in undifferentiated pleomorphic sarcomas.

  • Philip Wong‎ et al.
  • Oncotarget‎
  • 2015‎

A common and aggressive subtype of soft-tissue sarcoma, undifferentiated pleomorphic sarcoma (UPS) was examined to determine the role of micro-RNAs (miRNAs) in modulating distant metastasis. Following histopathologic review, 110 fresh frozen clinically annotated UPS samples were divided into two independent cohorts for Training (42 patients), and Validation (68 patients) analyses. Global miRNA profiling on the Training Set and functional analysis in vitro suggested that miRNA-138 and its downstream RHO-ROCK cell adhesion pathway was a convergent target of miRNAs associated with the development of metastasis. A six-miRNA signature set prognostic of distant metastasis-free survival (DMFS) was developed from Training Set miRNA expression values. Using the six-miRNA signature, patients were successfully categorized into high- and low-risk groups for DMFS in an independent Validation Set, with a hazard ratio (HR) of 2.25 (p = 0.048). After adjusting for other known prognostic variables such as age, gender, tumor grade, size, depth, and treatment with radiotherapy, the six-miRNA signature retained prognostic value with a HR of 3.46 (p < 0.001). A prognostic miRNA biomarker for clinical validation was thus identified along with a functional pathway that modulates UPS metastatic phenotype.


Identification of a recurrent transforming UBR5-ZNF423 fusion gene in EBV-associated nasopharyngeal carcinoma.

  • Grace Ty Chung‎ et al.
  • The Journal of pathology‎
  • 2013‎

Nasopharyngeal carcinoma (NPC) is a distinct type of head and neck cancer which is prevalent in southern China, south-east Asia and northern Africa. The development and stepwise progression of NPC involves accumulation of multiple gross genetic changes during the clonal expansion of Epstein-Barr virus (EBV)-infected nasopharyngeal epithelial cell population. Here, using paired-end whole-transcriptome sequencing, we discovered a number of chimeric fusion transcripts in a panel of EBV-positive tumour lines. Among these transcripts, a novel fusion of ubiquitin protein ligase E3 component n-recognin 5 (UBR5) on 8q22.3 and zinc finger protein 423 (ZNF423) on 16q12.1, identified from the NPC cell line C666-1, was recurrently detected in 12/144 (8.3%) of primary tumours. The fusion gene contains exon 1 of UBR5 and exons 7-9 of ZNF423 and produces a 94 amino acid chimeric protein including the original C-terminal EBF binding domain (ZF29-30) of ZNF423. Notably, the growth of NPC cells with UBR5-ZNF423 rearrangement is dependent on expression of this fusion protein. Knock-down of UBR5-ZNF423 by fusion-specific siRNA significantly inhibited the cell proliferation and colony-forming ability of C666-1 cells. The transforming ability of UBR5-ZNF423 fusion was also confirmed in NIH3T3 fibroblasts. Constitutive expression of UBR5-ZNF423 in NIH3T3 fibroblasts significantly enhanced its anchorage-independent growth in soft agar and induced tumour formation in a nude mouse model. These findings suggest that expression of UBR5-ZNF423 protein might contribute to the transformation of a subset of NPCs, possibly by altering the activity of EBFs (early B cell factors). Identification of the oncogenic UBR5-ZNF423 provides new potential opportunities for therapeutic intervention in NPC.


vcfView: An Extensible Data Visualization and Quality Assurance Platform for Integrated Somatic Variant Analysis.

  • Brian O'Sullivan‎ et al.
  • Cancer informatics‎
  • 2020‎

Somatic mutations can have critical prognostic and therapeutic implications for cancer patients. Although targeted methods are often used to assay specific cancer driver mutations, high throughput sequencing is frequently applied to discover novel driver mutations and to determine the status of less-frequent driver mutations. The task of recovering somatic mutations from these data is nontrivial as somatic mutations must be distinguished from germline variants, sequencing errors, and other artefacts. Consequently, bioinformatics pipelines for recovery of somatic mutations from high throughput sequencing typically involve a large number of analytical choices in the form of quality filters.


Pharmacokinetics of Oral Vitamin D in Children with Obesity and Asthma.

  • Jason E Lang‎ et al.
  • Clinical pharmacokinetics‎
  • 2023‎

Vitamin D insufficiency is common in several pediatric diseases including obesity and asthma. Little data exist describing the pharmacokinetics of oral vitamin D in children or the optimal dosing to achieve therapeutic 25(OH)D targets. Describe the pharmacokinetics of oral Vitamin D in children with asthma.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: