Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 212 papers

β1,4-galactosyltransferase-I in synovial tissue of collagen-induced rat model of rheumatoid arthritis.

  • Hairong Wang‎ et al.
  • Clinical and experimental medicine‎
  • 2011‎

β1,4-galactosyltransferase-I (β1,4-GalT-I), which is one of the best-studied glycosyltransferases, plays a key role in the synthesis of selectin ligands such as sialyl Lewis (sLe(x)) and sulfated sLe(x). Previous studies showed that inflammatory responses of β1,4-GalT-I-deficient mice were impaired because of the defect in selectin-ligand biosynthesis. However, the expression of β1,4-GalT-I and its biological function in rheumatoid arthritis (RA) remain to be elucidated. The mRNA and protein expression of β1,4-GalT-I increased in synovial tissue of the RA group compared with the Normal group at 10d and 15d after collagen-induced. Double staining indicated β1,4-GalT-I overlapped with macrophage-like synoviocytes (MLSs), fibroblast-like synoviocytes (FLSs), neutrophils and tumor necrosis factor-α (TNF-α). Moreover, β1,4-GalT-I mRNA in FLSs in vitro was affected in a dose- and time-dependent manner in response to TNF-α stimulation. ELISA revealed that expression of TNF-α was attenuated in FLSs in vitro treated with β1,4-GalT-I-Ab. We therefore suggest that β1,4-GalT-I may play an important role in the inflammation process of RA synovial tissue, which would provide the foundation for further researching into the concrete mechanism of β1,4-GalT-I in RA.


SKA1 regulates the metastasis and cisplatin resistance of non-small cell lung cancer.

  • Lihua Shen‎ et al.
  • Oncology reports‎
  • 2016‎

Currently, chemotherapy with platinum-based drugs including cisplatin is the most effective therapy for the treatment of non-small cell lung carcinoma (NSCLC). However, the efficacy of chemotherapy is limited due to commonly developed drug resistance. Spindle and kinetochore-associated complex subunit 1 (SKA1) is part of a complex essential for stabilizing the attachment of spindle microtubules to kinetochores and for maintaining the metaphase plate during mitosis. In the present study, we aimed to investigate the role of SKA1 in the process of metastasis and drug resistance of NSCLC. We completed a series of experiments to investigate the function of SKA1 in NSCLC metastasis and drug resistance including qRT-PCR, immunohistochemistry and western blotting, as well as MTT, BrdU, wounded healing, Transwell and gelatin zymography assays. We demonstrated that the expression levels of SKA1 were elevated in NSCLC and were correlated with cancer progression and malignancy. We also reported that SKA1 positively regulated the proliferation and metastatic ability of NSCLC cells. In addition, we determined that SKA1 contributed to cisplatin resistance in NSCLC cells by protecting these cells from cisplatin-induced cell apoptosis. SKA1 also appeared to regulate the ERK1/2 and the Akt-mediated signaling pathways in NSCLC cells. SKA1 is required for metastasis and cisplatin resistance of non-small cell lung cancer.


Variant Discovery and Fine Mapping of Genetic Loci Associated with Blood Pressure Traits in Hispanics and African Americans.

  • Nora Franceschini‎ et al.
  • PloS one‎
  • 2016‎

Despite the substantial burden of hypertension in US minority populations, few genetic studies of blood pressure have been conducted in Hispanics and African Americans, and it is unclear whether many of the established loci identified in European-descent populations contribute to blood pressure variation in non-European descent populations. Using the Metabochip array, we sought to characterize the genetic architecture of previously identified blood pressure loci, and identify novel cardiometabolic variants related to systolic and diastolic blood pressure in a multi-ethnic US population including Hispanics (n = 19,706) and African Americans (n = 18,744). Several known blood pressure loci replicated in African Americans and Hispanics. Fourteen variants in three loci (KCNK3, FGF5, ATXN2-SH2B3) were significantly associated with blood pressure in Hispanics. The most significant diastolic blood pressure variant identified in our analysis, rs2586886/KCNK3 (P = 5.2 x 10-9), also replicated in independent Hispanic and European-descent samples. African American and trans-ethnic meta-analysis data identified novel variants in the FGF5, ULK4 and HOXA-EVX1 loci, which have not been previously associated with blood pressure traits. Our identification and independent replication of variants in KCNK3, a gene implicated in primary hyperaldosteronism, as well as a variant in HOTTIP (HOXA-EVX1) suggest that further work to clarify the roles of these genes may be warranted. Overall, our findings suggest that loci identified in European descent populations also contribute to blood pressure variation in diverse populations including Hispanics and African Americans-populations that are understudied for hypertension genetic risk factors.


Antibacterial, cytotoxic and genotoxic activity of nitrogenated and haloid derivatives of C50-C60 and C70-C120 polyprenol homologs.

  • Ran Tao‎ et al.
  • Lipids in health and disease‎
  • 2016‎

Polyprenol is an important lipid with many bioactive effects. The study on differences in bioactive effects of polyprenol derivatives having different isoprene units are seldom reported and it is helpful to find out which type of polyprenol derivatives are effective for treating A549/HepG2 cells and E. coli /S. aureus.


GAD2 Alternative Transcripts in the Human Prefrontal Cortex, and in Schizophrenia and Affective Disorders.

  • Kasey N Davis‎ et al.
  • PloS one‎
  • 2016‎

Genetic variation and early adverse environmental events work together to increase risk for schizophrenia. γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in adult mammalian brain, plays a major role in normal brain development, and has been strongly implicated in the pathobiology of schizophrenia. GABA synthesis is controlled by two glutamic acid decarboxylase (GAD) genes, GAD1 and GAD2, both of which produce a number of alternative transcripts. Genetic variants in the GAD1 gene are associated with increased risk for schizophrenia, and reduced expression of its major transcript in the human dorsolateral prefrontal cortex (DLPFC). No consistent changes in GAD2 expression have been found in brains from patients with schizophrenia. In this work, with the use of RNA sequencing and PCR technologies, we confirmed and tracked the expression of an alternative truncated transcript of GAD2 (ENST00000428517) in human control DLPFC homogenates across lifespan besides the well-known full length transcript of GAD2. In addition, using quantitative RT-PCR, expression of GAD2 full length and truncated transcripts were measured in the DLPFC of patients with schizophrenia, bipolar disorder and major depression. The expression of GAD2 full length transcript is decreased in the DLPFC of schizophrenia and bipolar disorder patients, while GAD2 truncated transcript is increased in bipolar disorder patients but decreased in schizophrenia patients. Moreover, the patients with schizophrenia with completed suicide or positive nicotine exposure showed significantly higher expression of GAD2 full length transcript. Alternative transcripts of GAD2 may be important in the growth and development of GABA-synthesizing neurons as well as abnormal GABA signaling in the DLPFC of patients with schizophrenia and affective disorders.


Inhibition of neddylation regulates dendritic cell functions via Deptor accumulation driven mTOR inactivation.

  • Mengmeng Cheng‎ et al.
  • Oncotarget‎
  • 2016‎

Neddylation, a newly identified post-translational modification, is significant for the activity and stability of target proteins. The exact role of neddylation in the pathogenesis of inflammatory bowel disease, specifically those mediated by dendritic cells (DCs), was still rarely reported. Here, we showed that inhibition of neddylation protected mice from mucosal inflammation. Targeting neddylation also inhibited DC maturation characterized by reduced cytokine production, down-regulated costimulatory molecules and suppressed capacity in allogeneic T cell stimulation. Additionally, inactivation of neddylation promotes caspase dependent apoptosis of DCs. These phenomena were attributed to the inactivation of mTOR, which was caused by Cullin-1 deneddylation induced Deptor accumulation. Together, our findings revealed that neddylation inhibition suppressed DC functions through mTOR signaling pathway and provided a potential therapeutic opportunity in inflammatory bowel diseases.


mTOR Inhibition Attenuates Dextran Sulfate Sodium-Induced Colitis by Suppressing T Cell Proliferation and Balancing TH1/TH17/Treg Profile.

  • Shurong Hu‎ et al.
  • PloS one‎
  • 2016‎

It has been established that mammalian target of Rapamycin (mTOR) inhibitors have anti-inflammatory effects in models of experimental colitis. However, the underlying mechanism is largely unknown. In this research, we investigate the anti-inflammatory effects of AZD8055, a potent mTOR inhibitor, on T cell response in dextran sulfate sodium (DSS)-induced colitis in mice, a commonly used animal model of inflammatory bowel diseases (IBD). Severity of colitis is evaluated by changing of body weight, bloody stool, fecal consistency, histology evaluation and cytokine expression. We find that AZD8055 treatment attenuates DSS-induced body weight loss, colon length shortening and pathological damage of the colon. And AZD8055 treatment decreases colonic expression of genes encoding the pro-inflammatory cytokines interferon-γ, interleukin (IL)-17A, IL-1β,IL-6 and tumor necrosis factor(TNF)-a and increases colonic expression of anti-inflammatory cytokines IL-10. We show that AZD8055 treatment decreases the percentages of CD4+ T cells and CD8+ T cells in spleen, lymph nodes and peripheral blood of mice. We also find that AZD8055 treatment significantly reduces the number of T helper 1(TH1) cells and TH17 cells and increases regulatory T (Treg) cells in the lamina propria and mesenteric lymph nodes. Furthermore, we demonstrates that AZD8055 suppresses the proliferation of CD4+ and CD8+ T cells and the differentiation of TH1/TH17 cells and expands Treg cells in vitro. The results suggest that, in experimental colitis, AZD8055 exerts anti-inflammatory effect by regulating T helper cell polarization and proliferation.


Identification of the proliferation/differentiation switch in the cellular network of multicellular organisms.

  • Kai Xia‎ et al.
  • PLoS computational biology‎
  • 2006‎

The protein-protein interaction networks, or interactome networks, have been shown to have dynamic modular structures, yet the functional connections between and among the modules are less well understood. Here, using a new pipeline to integrate the interactome and the transcriptome, we identified a pair of transcriptionally anticorrelated modules, each consisting of hundreds of genes in multicellular interactome networks across different individuals and populations. The two modules are associated with cellular proliferation and differentiation, respectively. The proliferation module is conserved among eukaryotic organisms, whereas the differentiation module is specific to multicellular organisms. Upon differentiation of various tissues and cell lines from different organisms, the expression of the proliferation module is more uniformly suppressed, while the differentiation module is upregulated in a tissue- and species-specific manner. Our results indicate that even at the tissue and organism levels, proliferation and differentiation modules may correspond to two alternative states of the molecular network and may reflect a universal symbiotic relationship in a multicellular organism. Our analyses further predict that the proteins mediating the interactions between these modules may serve as modulators at the proliferation/differentiation switch.


The genetic underpinnings of variation in ages at menarche and natural menopause among women from the multi-ethnic Population Architecture using Genomics and Epidemiology (PAGE) Study: A trans-ethnic meta-analysis.

  • Lindsay Fernández-Rhodes‎ et al.
  • PloS one‎
  • 2018‎

Current knowledge of the genetic architecture of key reproductive events across the female life course is largely based on association studies of European descent women. The relevance of known loci for age at menarche (AAM) and age at natural menopause (ANM) in diverse populations remains unclear. We investigated 32 AAM and 14 ANM previously-identified loci and sought to identify novel loci in a trans-ethnic array-wide study of 196,483 SNPs on the MetaboChip (Illumina, Inc.). A total of 45,364 women of diverse ancestries (African, Hispanic/Latina, Asian American and American Indian/Alaskan Native) in the Population Architecture using Genomics and Epidemiology (PAGE) Study were included in cross-sectional analyses of AAM and ANM. Within each study we conducted a linear regression of SNP associations with self-reported or medical record-derived AAM or ANM (in years), adjusting for birth year, population stratification, and center/region, as appropriate, and meta-analyzed results across studies using multiple meta-analytic techniques. For both AAM and ANM, we observed more directionally consistent associations with the previously reported risk alleles than expected by chance (p-valuesbinomial≤0.01). Eight densely genotyped reproductive loci generalized significantly to at least one non-European population. We identified one trans-ethnic array-wide SNP association with AAM and two significant associations with ANM, which have not been described previously. Additionally, we observed evidence of independent secondary signals at three of six AAM trans-ethnic loci. Our findings support the transferability of reproductive trait loci discovered in European women to women of other race/ethnicities and indicate the presence of additional trans-ethnic associations both at both novel and established loci. These findings suggest the benefit of including diverse populations in future studies of the genetic architecture of female growth and development.


Familial screening of children with Wilson disease: Necessity of screening in previous generation and screening methods.

  • Huamei Li‎ et al.
  • Medicine‎
  • 2018‎

Wilson disease (WD) is an autosomal recessive genetic disorder associated with copper metabolism. Early diagnosis and therapy can result in good prognosis of WD. Thus, it is highly recommended to perform familial screening. In this study, we aimed to investigate the range of familial screening of children with WD and determine the appropriate screening methods.We enrolled 20 children with WD and 50 family members of each of these patients (40 parents and 10 siblings). All the subjects underwent a physical examination, Kayser-Fleischer (K-F) rings in the cornea, abdominal ultrasonography (Abdl Ur), cranial magnetic resonance imaging (MRI), serum ceruloplasmin, serum copper, 24-hour urine copper, blood alanine transaminase (ALT) and aspartate transaminase (AST), and ATP7B gene.Two new patients with presymptomatic WD (1 mother and 1 brother) in 2 families were found by screening. They had no clinical symptoms and K-F rings in corneal. Biochemical examination indicated decreased serum ceruloplasmin and serum copper in the mother and decreased serum ceruloplasmin in the brother. Gene sequencing revealed compound heterozygous mutations in them. In addition, 48 heterozygous carriers of Wilson disease (WHDzc) were found in this study. The levels of ceruloplasmin and serum copper in patients of WD were significantly less than WHDzc and 24-hour urinary copper were significantly higher than WHDzc (P = .000). The biochemical profiles of WD and WDHzc overlapped in range of 0.8 to 1.5 g/L in ceruloplasmin, above 9 μmol/L in serum copper and below 100 μg/24 h in urinary copper. Gene sequencing showed 2 pathological mutations in all patients with WD and 1 pathological mutation in all WDHzc.Not only siblings but also the previous generation of children probands with WD should be screened. Genetic testing should be conducted for the diagnosis of presymptomatic patients with WD.


Activation of the kynurenine pathway is associated with poor outcome in Pneumocystis pneumonia patients infected with HIV: results of 2 months cohort study.

  • Mengyan Wang‎ et al.
  • BMC infectious diseases‎
  • 2019‎

Indoleamine 2, 3-dioxygenase (IDO) is a key enzyme in the degradation of tryptophan (Trp) to kynurenine (Kyn). We measured IDO activity as the Kyn to Trp ratio, and investigated whether IDO could be used to assess prognosis of acquired immune deficiency Sydrome (AIDS) patients with pneumocystis pneumonia (PCP).


Epigenetic Co-Deregulation of EZH2/TET1 is a Senescence-Countering, Actionable Vulnerability in Triple-Negative Breast Cancer.

  • Yong Yu‎ et al.
  • Theranostics‎
  • 2019‎

Triple-negative breast cancer (TNBC) cells lack the expression of ER, PR and HER2. Thus, TNBC patients cannot benefit from hormone receptor-targeted therapy as non-TNBC patients, but can only receive chemotherapy as the systemic treatment and have a worse overall outcome. More effective therapeutic targets and combination therapy strategies are urgently needed to improve the treatment effectiveness. Methods: We analyzed the expression levels of EZH2 and TET1 in TCGA and our own breast cancer patient cohort, and tested their correlation with patient survival. We used TNBC and non-TNBC cell lines and mouse xenograft tumor model to unveil novel EZH2 targets and investigated the effect of EZH2 inhibition or TET1 overexpression in cell proliferation and viability of TNBC cells. Results: In TNBC cells, EZH2 decreases TET1 expression by H3K27me3 epigenetic regulation and subsequently suppresses anti-tumor p53 signaling pathway. Patients with high EZH2 and low TET1 presented the poorest survival outcome. Experimentally, targeting EZH2 in TNBC cells with specific inhibitor GSK343 or shRNA genetic approach could induce cell cycle arrest and senescence by elevating TET1 expression and p53 pathway activation. Using mouse xenograft model, we have tested a novel therapy strategy to combine GSK343 and chemotherapy drug Adriamycin and could show drastic and robust inhibition of TNBC tumor growth by synergistic induction of senescence and apoptosis. Conclusions: We postulate that the well-controlled dynamic pathway EZH2-H3K27me3-TET1 is a novel epigenetic co-regulator module and provide evidence regarding how to exploit it as a novel therapeutic target via its pivotal role in senescence and apoptosis control. Of clinical and therapeutic significance, the present study opens a new avenue for TNBC treatment by targeting the EZH2-H3K27me3-TET1 pathway that can modulate the epigenetic landscape.


Role of S100A3 in human hepatocellular carcinoma and the anticancer effect of sodium cantharidinate.

  • Ran Tao‎ et al.
  • Experimental and therapeutic medicine‎
  • 2017‎

The fifth most common cancer worldwide is hepatocellular carcinoma (HCC), which has an annual mortality rate of ~800,000. Although surgical procedures for HCC, such as hepatic resection and liver transplantation, have progressed and the outcomes of patients have improved, HCC is still characterized by frequent recurrence, even after liver transplantation. In the present study the expression of the protein coding gene, S100 calcium binding protein A3 (S100A3), was observed in 62 HCC tissues and tumor-surrounding tissues. The present study indicated that S100A3 activation was involved in tumorigenesis and tumor aggressiveness. The protein and mRNA expression levels of S100A3 in the human HCC cell line (HepG2) were investigated using western blotting and reverse transcription-quantitative polymerase chain reaction analysis, respectively. The function of sodium cantharidinate in inducing HCC cell apoptosis was also investigated. Sodium cantharidinate inhibited the protein and gene expression of S100A3 in HepG2 cells in vitro. These data suggested that S100A3 has an important role in human HCC. The present study indicates that the functional properties of sodium cantharidinate are promising for the development of a novel drug that may control the expression of S100A3 and improve the treatment of human HCC in the near future.


TRIM52 up-regulation in hepatocellular carcinoma cells promotes proliferation, migration and invasion through the ubiquitination of PPM1A.

  • Yi Zhang‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2018‎

Many tripartite motif (TRIM) family proteins have been reported to be of great importance in the initiation and progression in hepatocellular carcinoma (HCC). However, the biological role and regulatory mechanism of tripartite motif containing 52 (TRIM52) in HCC development and progression are poorly defined.


The involvement of lipid raft pathway in suppression of TGFβ-mediated metastasis by tolfenamic acid in hepatocellular carcinoma cells.

  • Jingfang Sun‎ et al.
  • Toxicology and applied pharmacology‎
  • 2019‎

TGFβ signaling plays an important role in orchestrating a favorable microenvironment for tumor cell growth and promoting epithelial-mesenchymal transition. As a conventional nonsteroidal anti-inflammation drugs, tolfenamic acid (TA) has been previously reported to exhibit anti-cancer activity. Herein, we investigated the effect of TA on TGFβ-mediated pro-metastatic activity and the underlying mechanisms in hepatocellular carcinoma (HCC). As a result, TA suppresses TGFβ-induced migration and glycolysis in HCC cells, which is accompanied with reduced Smad phosphorylation and subsequent nuclear transcription activity. Mechanistically, TA promotes lipid raft-caveolar internalization pathway of TGFβ receptor, therefore leading to its rapid turnover. Consistently, TA inhibits constitutively active TGFβ type I receptor induced Smad phosphorylation and EMT markers, whereas ectopic expression of TGFβ type II receptor could partially rescue TGFβ-mediated Smad2 phosphorylation and downstream genes expression in the presence of TA. Furthermore, TA inhibited HCC cells invasion in nude mice, associated with the alteration of characteristics related with EMT and glycolysis of cancer cells. Our study suggests TA could activate lipid raft pathway and modulate TGFβ mediated metastasis, implicating the potential application of TA as a modulator of tumor microenvironment in HCC.


How Social Communications Influence Advertising Perception and Response in Online Communities?

  • Fue Zeng‎ et al.
  • Frontiers in psychology‎
  • 2017‎

This research aims to explore how social communications of online communities affect users' perception and responses toward social media advertising. We developed a conceptual model based on the SBT, encapsulating 9 constructs and 10 hypothesis extracted from the extant social media advertising literature. Our research outcome proves that social communications can effectively boost users' behaviors to be in accordance with an online social community, thus facilitate their acceptance and responses toward social media advertising, with users' group intention as an intervening factor. From an operational standpoint, it's an effective way to build and maintain social bonds between users and the community by boosting social communications, supporting fluent interpersonal communications. In addition, managers of an online community should elaborate on users' group intentions to increase users' advertising acceptance and response.


Variation of 13C and 15N enrichments in different plant components of labeled winter wheat (Triticum aestivum L.).

  • Zhaoan Sun‎ et al.
  • PeerJ‎
  • 2019‎

Information on the homogeneity and distribution of 13carbon (13C) and nitrogen (15N) labeling in winter wheat (Triticum aestivum L.) is limited. We conducted a dual labeling experiment to evaluate the variability of 13C and 15N enrichment in aboveground parts of labeled winter wheat plants. Labeling with 13C and 15N was performed on non-nitrogen fertilized (-N) and nitrogen fertilized (+N, 250 kg N ha-1) plants at the elongation and grain filling stages. Aboveground parts of wheat were destructively sampled at 28 days after labeling. As winter wheat growth progressed, δ 13C values of wheat ears increased significantly, whereas those of leaves and stems decreased significantly. At the elongation stage, N addition tended to reduce the aboveground δ 13C values through dilution of C uptake. At the two stages, upper (newly developed) leaves were more highly enriched with 13C compared with that of lower (aged) leaves. Variability between individual wheat plants and among pots at the grain filling stage was smaller than that at the elongation stage, especially for the -N treatment. Compared with those of 13C labeling, differences in 15N excess between aboveground components (leaves and stems) under 15N labeling conditions were much smaller. We conclude that non-N fertilization and labeling at the grain filling stage may produce more uniformly 13C-labeled wheat materials, whereas the materials were more highly 13C-enriched at the elongation stage, although the δ 13C values were more variable. The 15N-enriched straw tissues via urea fertilization were more uniformly labeled at the grain filling stage compared with that at the elongation stage.


Clinicopathological characteristics and survival outcomes of invasive lobular carcinoma in different races.

  • Li-Yuan Yang‎ et al.
  • Oncotarget‎
  • 2017‎

To investigate the clinicopathological characteristics and to determine whether there is a differential effect of race and examine survival outcomes according to race, 18,295 breast invasive lobular carcinoma (ILC) patients were identified in the Surveillance, Epidemiology, and End Result (SEER) database, which includes White patients (n=15,936), Black patients (n=1,451) and patients of other races (including American Indians/Alaskan Natives and Asian/Pacific Islanders) (n=908). The Black ILC patients presented a higher rate of advanced histological grades and American Joint Committee on Cancer (AJCC) stages, a higher rate of lymph node (LN) involvement and a lower rate of progesterone receptors (PR)-positivity than the White patients and other races. The five-year overall survival (OS) and five-year breast cancer specific survival (BCSS) were worst in the Black patients among these patients (85.5%, 76.0% and 87.7%, P<0.01; 91.1%, 84.4% and 91.6%, P<0.01). Multivariate regression analyses were performed to determine the risk hazards ratios (HR) of death for patients of the White, Black and other races. Among these patients, the Black patients had the worst survival outcomes in five-year OS and BCSS outcomes (HR=1.35, 95% confidence interval (CI) :1.20-1.51, P<0.01; HR=1.39, 95%CI:1.21-1.61, P<0.01, respectively). After a 1:1:1 matching of the three groups, the Black patients still presented worse survival outcomes in BCSS compared to White patients (HR=1.88, 95%CI: 1.14-3.10, P=0.013), however, there was no difference in OS (HR=1.35, 95%CI: 0.93-1.96, P=0.111). Difference in outcomes may partially explained by difference in histological grades, AJCC stage, LN and PR status among the three groups. In conclusion, this study revealed that the Black patients had worse five-year OS and BCSS than White and other race patients.


Prevalence of dyslipidaemia and risk factors in Chinese coal miners: a cross-sectional survey study.

  • Ye Fan‎ et al.
  • Lipids in health and disease‎
  • 2017‎

Although coal miners are susceptible to dyslipidaemia owing to their highly risky and stressful working environment as well as unhealthy lifestyle, very few studies have focused on this issue thus far. Therefore, this study investigated the current epidemiological characteristics of dyslipidaemia among Chinese coal miners.


Improvement of In Vitro Three-Dimensional Cartilage Regeneration by a Novel Hydrostatic Pressure Bioreactor.

  • Jie Chen‎ et al.
  • Stem cells translational medicine‎
  • 2017‎

In vitro three-dimensional (3D) cartilage regeneration is a promising strategy for repair of cartilage defects. However, inferior mechanical strength and tissue homogeneity greatly restricted its clinical translation. Simulation of mechanical stress through a bioreactor is an important approach for improving in vitro cartilage regeneration. The current study developed a hydrostatic pressure (HP) bioreactor based on a novel pressure-transmitting mode achieved by slight deformation of a flexible membrane in a completely sealed stainless steel device. The newly developed bioreactor efficiently avoided the potential risks of previously reported pressure-transmitting modes and simultaneously addressed a series of important issues, such as pressure scopes, culture chamber sizes, sealability, contamination control, and CO2 balance. The whole bioreactor system realized stable long-term (8 weeks) culture under high HP (5-10 MPa) without the problems of medium leakage and contamination. Furthermore, the results of in vitro 3D tissue culture based on a cartilage regeneration model revealed that HP provided by the newly developed bioreactor efficiently promoted in vitro 3D cartilage formation by improving its mechanical strength, thickness, and homogeneity. Detailed analysis in cell proliferation, cartilage matrix production, and cross-linking level of collagen macromolecules, as well as density and alignment of collagen fibers, further revealed the possible mechanisms that HP regulated in vitro cartilage regeneration. The current study provided a highly efficient and stable bioreactor system for improving in vitro 3D cartilage regeneration and thus will help to accelerate its clinical translation. Stem Cells Translational Medicine 2017;6:982-991.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: