Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Cocaine Self-Administration and Extinction Leads to Reduced Glial Fibrillary Acidic Protein Expression and Morphometric Features of Astrocytes in the Nucleus Accumbens Core.

  • Michael D Scofield‎ et al.
  • Biological psychiatry‎
  • 2016‎

As a more detailed picture of nervous system function emerges, diversity of astrocyte function becomes more widely appreciated. While it has been shown that cocaine experience impairs astroglial glutamate uptake and release in the nucleus accumbens (NAc), few studies have explored effects of self-administration on the structure and physiology of astrocytes. We investigated the effects of extinction from daily cocaine self-administration on astrocyte characteristics including glial fibrillary acidic protein (GFAP) expression, surface area, volume, and colocalization with a synaptic marker.


HDAC5 and Its Target Gene, Npas4, Function in the Nucleus Accumbens to Regulate Cocaine-Conditioned Behaviors.

  • Makoto Taniguchi‎ et al.
  • Neuron‎
  • 2017‎

Individuals suffering from substance-use disorders develop strong associations between the drug's rewarding effects and environmental cues, creating powerful, enduring triggers for relapse. We found that dephosphorylated, nuclear histone deacetylase 5 (HDAC5) in the nucleus accumbens (NAc) reduced cocaine reward-context associations and relapse-like behaviors in a cocaine self-administration model. We also discovered that HDAC5 associates with an activity-sensitive enhancer of the Npas4 gene and negatively regulates NPAS4 expression. Exposure to cocaine and the test chamber induced rapid and transient NPAS4 expression in a small subpopulation of FOS-positive neurons in the NAc. Conditional deletion of Npas4 in the NAc significantly reduced cocaine conditioned place preference and delayed learning of the drug-reinforced action during cocaine self-administration, without affecting cue-induced reinstatement of drug seeking. These data suggest that HDAC5 and NPAS4 in the NAc are critically involved in reward-relevant learning and memory processes and that nuclear HDAC5 limits reinstatement of drug seeking independent of NPAS4.


NPAS4 in the medial prefrontal cortex mediates chronic social defeat stress-induced anhedonia-like behavior and reductions in excitatory synapses.

  • Brandon W Hughes‎ et al.
  • eLife‎
  • 2023‎

Chronic stress can produce reward system deficits (i.e., anhedonia) and other common symptoms associated with depressive disorders, as well as neural circuit hypofunction in the medial prefrontal cortex (mPFC). However, the molecular mechanisms by which chronic stress promotes depressive-like behavior and hypofrontality remain unclear. We show here that the neuronal activity-regulated transcription factor, NPAS4, in the mPFC is regulated by chronic social defeat stress (CSDS), and it is required in this brain region for CSDS-induced changes in sucrose preference and natural reward motivation in the mice. Interestingly, NPAS4 is not required for CSDS-induced social avoidance or anxiety-like behavior. We also find that mPFC NPAS4 is required for CSDS-induced reductions in pyramidal neuron dendritic spine density, excitatory synaptic transmission, and presynaptic function, revealing a relationship between perturbation in excitatory synaptic transmission and the expression of anhedonia-like behavior in the mice. Finally, analysis of the mice mPFC tissues revealed that NPAS4 regulates the expression of numerous genes linked to glutamatergic synapses and ribosomal function, the expression of upregulated genes in CSDS-susceptible animals, and differentially expressed genes in postmortem human brains of patients with common neuropsychiatric disorders, including depression. Together, our findings position NPAS4 as a key mediator of chronic stress-induced hypofrontal states and anhedonia-like behavior.


Amperometric measurements of cocaine cue and novel context-evoked glutamate and nitric oxide release in the nucleus accumbens core.

  • Benjamin M Siemsen‎ et al.
  • Journal of neurochemistry‎
  • 2020‎

Cue-induced reinstatement of cocaine seeking after self-administration (SA) and extinction relies on glutamate release in the nucleus accumbens core (NAcore), which activates neuronal nitric oxide synthase interneurons. Nitric oxide (NO) is required for structural plasticity in NAcore medium spiny neurons, as well as cued cocaine seeking. However, NO release in the NAcore during reinstatement has yet to be directly measured. Furthermore, the temporal relationship between glutamate release and the induction of an NO response also remains unknown. Using wireless amperometric recordings in awake behaving rats, we quantified the magnitude and temporal dynamics of novel context- and cue-induced reinstatement-evoked glutamate and NO release in the NAcore. We found that re-exposure to cocaine-conditioned stimuli following SA and extinction increased extracellular glutamate, leading to release of NO in the NAcore. In contrast, exposing drug-naïve rats to a novel context led to a lower magnitude rise in glutamate in the NAcore relative to cue-induced reinstatement. Interestingly, novel context exposure evoked a higher magnitude NO response relative to cue-induced reinstatement. Despite differences in magnitude, novel context evoked-NO release in the NAcore was also temporally delayed when compared to glutamate. These results demonstrate a dissociation between the magnitude of cocaine cue- and novel context-evoked glutamate and NO release in the NAcore, yet similarity in the temporal dynamics of their release. Together, these data contribute to a greater understanding of the relationship between glutamate and NO, two neurotransmitters implicated in encoding the valence of distinct contextual stimuli.


Chronic intermittent ethanol and lipopolysaccharide exposure differentially alter Iba1-derived microglia morphology in the prelimbic cortex and nucleus accumbens core of male Long-Evans rats.

  • Benjamin M Siemsen‎ et al.
  • Journal of neuroscience research‎
  • 2021‎

Accumulating evidence has linked pathological changes associated with chronic alcohol exposure to neuroimmune signaling mediated by microglia. Prior characterization of the microglial structure-function relationship demonstrates that alterations in activity states occur concomitantly with reorganization of cellular architecture. Accordingly, gaining a better understanding of microglial morphological changes associated with ethanol exposure will provide valuable insight into how neuroimmune signaling may contribute to ethanol-induced reshaping of neuronal function. Here we have used Iba1-staining combined with high-resolution confocal imaging and 3D reconstruction to examine microglial structure in the prelimbic (PL) cortex and nucleus accumbens (NAc) in male Long-Evans rats. Rats were either sacrificed at peak withdrawal following 15 days of exposure to chronic intermittent ethanol (CIE) or 24 hr after two consecutive injections of the immune activator lipopolysaccharide (LPS), each separated by 24 hr. LPS exposure resulted in dramatic structural reorganization of microglia in the PL cortex, including increased soma volume, overall cellular volume, and branching complexity. In comparison, CIE exposure was associated with a subtle increase in somatic volume and differential effects on microglia processes, which were largely absent in the NAc. These data reveal that microglial activation following a neuroimmune challenge with LPS or exposure to chronic alcohol exhibits distinct morphometric profiles and brain region-dependent specificity.


Activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) regulates anxiety- and novelty-related behaviors.

  • Rachel D Penrod‎ et al.
  • Genes, brain, and behavior‎
  • 2019‎

The activity-regulated cytoskeleton-associated protein (Arc, also known as Arg3.1) regulates glutamatergic synapse plasticity and has been linked to neuropsychiatric illness; however, its role in behaviors associated with mood and anxiety disorders remains unclear. We find that stress upregulates Arc expression in the adult mouse nucleus accumbens (NAc)-a brain region implicated in mood and anxiety behaviors. Global Arc knockout mice have altered AMPAR-subunit surface levels in the adult NAc, and the Arc-deficient mice show reductions in anxiety-like behavior, deficits in social novelty preference, and antidepressive-like behavior. Viral-mediated expression of Arc in the adult NAc of male, global Arc KO mice restores normal levels of anxiety-like behavior in the elevated plus maze (EPM). Consistent with this finding, viral-mediated reduction of Arc in the adult NAc reduces anxiety-like behavior in male, but not female, mice in the EPM. NAc-specific reduction of Arc also produced significant deficits in both object and social novelty preference tasks. Together our findings indicate that Arc is essential for regulating normal mood- and anxiety-related behaviors and novelty discrimination, and that Arc's function within the adult NAc contributes to these behavioral effects.


MEF2C Hypofunction in Neuronal and Neuroimmune Populations Produces MEF2C Haploinsufficiency Syndrome-like Behaviors in Mice.

  • Adam J Harrington‎ et al.
  • Biological psychiatry‎
  • 2020‎

Microdeletions of the MEF2C gene are linked to a syndromic form of autism termed MEF2C haploinsufficiency syndrome (MCHS). MEF2C hypofunction in neurons is presumed to underlie most of the symptoms of MCHS. However, it is unclear in which cell populations MEF2C functions to regulate neurotypical development.


Heroin Self-Administration and Extinction Increase Prelimbic Cortical Astrocyte-Synapse Proximity and Alter Dendritic Spine Morphometrics That Are Reversed by N-Acetylcysteine.

  • Benjamin M Siemsen‎ et al.
  • Cells‎
  • 2023‎

Clinical and preclinical studies indicate that adaptations in corticostriatal neurotransmission significantly contribute to heroin relapse vulnerability. In animal models, heroin self-administration and extinction produce cellular adaptations in both neurons and astrocytes within the nucleus accumbens (NA) core that are required for cue-induced heroin seeking. Specifically, decreased glutamate clearance and reduced association of perisynaptic astrocytic processes with NAcore synapses allow glutamate release from prelimbic (PrL) cortical terminals to engage synaptic and structural plasticity in NAcore medium spiny neurons. Normalizing astrocyte glutamate homeostasis with drugs like the antioxidant N-acetylcysteine (NAC) prevents cue-induced heroin seeking. Surprisingly, little is known about heroin-induced alterations in astrocytes or pyramidal neurons projecting to the NAcore in the PrL cortex (PrL-NAcore). Here, we observe functional adaptations in the PrL cortical astrocyte following heroin self-administration (SA) and extinction as measured by the electrophysiologically evoked plasmalemmal glutamate transporter 1 (GLT-1)-dependent current. We likewise observed the increased complexity of the glial fibrillary acidic protein (GFAP) cytoskeletal arbor and increased association of the astrocytic plasma membrane with synaptic markers following heroin SA and extinction training in the PrL cortex. Repeated treatment with NAC during extinction reversed both the enhanced astrocytic complexity and synaptic association. In PrL-NAcore neurons, heroin SA and extinction decreased the apical tuft dendritic spine density and enlarged dendritic spine head diameter in male Sprague-Dawley rats. Repeated NAC treatment during extinction prevented decreases in spine density but not dendritic spine head expansion. Moreover, heroin SA and extinction increased the co-registry of the GluA1 subunit of AMPA receptors in both the dendrite shaft and spine heads of PrL-NAcore neurons. Interestingly, the accumulation of GluA1 immunoreactivity in spine heads was further potentiated by NAC treatment during extinction. Finally, we show that the NAC treatment and elimination of thrombospondin 2 (TSP-2) block cue-induced heroin relapse. Taken together, our data reveal circuit-level adaptations in cortical dendritic spine morphology potentially linked to heroin-induced alterations in astrocyte complexity and association at the synapses. Additionally, these data demonstrate that NAC reverses PrL cortical heroin SA-and-extinction-induced adaptations in both astrocytes and corticostriatal neurons.


Enduring alterations in hippocampal astrocytesynaptic proximity following adolescent alcohol exposure: reversal by gabapentin.

  • Kati L Healey‎ et al.
  • Neural regeneration research‎
  • 2020‎

Adolescent alcohol abuse is a substantive public health problem that has been the subject of intensive study in recent years. Despite reports of a wide range of effects of adolescent intermittent ethanol (AIE) exposure on brain and behavior, little is known about the mechanisms that may underlie those effects, and even less about treatments that might reverse them. Recent studies from our laboratory have indicated that AIE produced enduring changes in astrocyte function and synaptic activity in the hippocampal formation, suggesting the possibility of an alteration in astrocyte-neuronal connectivity and function. We utilized astrocyte-specific, membrane restricted viral labeling paired with immunohistochemistry to perform confocal single cell astrocyte imaging, three-dimensional reconstruction, and quantification of astrocyte morphology in hippocampal area CA1 from adult rats after AIE. Additionally, we assessed the colocalization of astrocyte plasma membrane labeling with immunoreactivity for AMPA-(α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) glutamate receptor 1, an AMPA receptor subunit and established neuronal marker of excitatory synapses, as a metric of astrocyte-synapse proximity. AIE significantly reduced the colocalization of the astrocyte plasma membrane with synaptic marker puncta in adulthood. This is striking in that it suggests not only an alteration of the physical association of astrocytes with synapses by AIE, but one that lasts into adulthood - well after the termination of alcohol exposure. Perhaps even more notable, the AIE-induced reduction of astrocyte-synapse interaction was reversed by sub-chronic treatment with the clinically used agent, gabapentin (Neurontin), in adulthood. This suggests that a medication in common clinical use may have the potential to reverse some of the enduring effects of adolescent alcohol exposure on brain function. All animal experiments conducted were approved by the Duke University Institutional Animal Care and Use Committee (Protocol Registry Number A159-18-07) on July 27, 2018.


A Subset of Nucleus Accumbens Neurons Receiving Dense and Functional Prelimbic Cortical Input Are Required for Cocaine Seeking.

  • Benjamin M Siemsen‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2022‎

Prelimbic cortical projections to the nucleus accumbens core are critical for cue-induced cocaine seeking, but the identity of the accumbens neuron(s) targeted by this projection, and the transient neuroadaptations contributing to relapse within these cells, remain unknown.


Perirhinal to prefrontal circuit in methamphetamine induced recognition memory deficits.

  • Jordan L Hopkins‎ et al.
  • Neuropharmacology‎
  • 2023‎

Return to methamphetamine (meth) use is part of an overarching addictive disorder hallmarked by cognitive sequela and cortical dysfunction in individuals who use meth chronically. In rats, long access meth self-administration produces object recognition memory deficits due to drug-induced plasticity within the perirhinal cortex (PRH). PRH projections are numerous and include the medial prefrontal cortex (mPFC). To evaluate the role of the PRH-mPFC reciprocal circuit in novel object recognition memory, a rgAAV encoding GFP-tagged Cre recombinase was infused into the PRH or the mPFC and rats were tested for recognition memory. On test day, one group explored both familiar and novel objects. A second group explored only familiar objects. GFP and Fos expression were visualized in the mPFC or PRH. During exploration, PRH neurons receiving input from the mPFC were equally activated by exploration of novel and familiar objects. In contrast, PRH neurons that provide input to the mPFC were disproportionately activated by novel objects. Further, the percent of Fos + cells in the PRH positively correlated with recognition memory. As such, the flow of communication appears to be from the PRH to the mPFC. In agreement with this proposed directionality, chemogenetic inhibition of the PRH-mPFC circuit impaired object recognition memory, whereas chemogenetic activation in animals with a history of long access meth self-administration reversed the meth-induced recognition memory deficit. This finding informs future work aimed at understanding the role of the PRH, mPFC, and their connectivity in meth associated memory deficits. These data suggest a more complex circuitry governing recognition memory than previously indicated with anatomical or lesion studies.


MEF2C regulates cortical inhibitory and excitatory synapses and behaviors relevant to neurodevelopmental disorders.

  • Adam J Harrington‎ et al.
  • eLife‎
  • 2016‎

Numerous genetic variants associated with MEF2C are linked to autism, intellectual disability (ID) and schizophrenia (SCZ) - a heterogeneous collection of neurodevelopmental disorders with unclear pathophysiology. MEF2C is highly expressed in developing cortical excitatory neurons, but its role in their development remains unclear. We show here that conditional embryonic deletion of Mef2c in cortical and hippocampal excitatory neurons (Emx1-lineage) produces a dramatic reduction in cortical network activity in vivo, due in part to a dramatic increase in inhibitory and a decrease in excitatory synaptic transmission. In addition, we find that MEF2C regulates E/I synapse density predominantly as a cell-autonomous, transcriptional repressor. Analysis of differential gene expression in Mef2c mutant cortex identified a significant overlap with numerous synapse- and autism-linked genes, and the Mef2c mutant mice displayed numerous behaviors reminiscent of autism, ID and SCZ, suggesting that perturbing MEF2C function in neocortex can produce autistic- and ID-like behaviors in mice.


An opioid-gated thalamoaccumbal circuit for the suppression of reward seeking in mice.

  • Kelsey M Vollmer‎ et al.
  • Nature communications‎
  • 2022‎

Suppression of dangerous or inappropriate reward-motivated behaviors is critical for survival, whereas therapeutic or recreational opioid use can unleash detrimental behavioral actions and addiction. Nevertheless, the neuronal systems that suppress maladaptive motivated behaviors remain unclear, and whether opioids disengage those systems is unknown. In a mouse model using two-photon calcium imaging in vivo, we identify paraventricular thalamostriatal neuronal ensembles that are inhibited upon sucrose self-administration and seeking, yet these neurons are tonically active when behavior is suppressed by a fear-provoking predator odor, a pharmacological stressor, or inhibitory learning. Electrophysiological, optogenetic, and chemogenetic experiments reveal that thalamostriatal neurons innervate accumbal parvalbumin interneurons through synapses enriched with calcium permeable AMPA receptors, and activity within this circuit is necessary and sufficient for the suppression of sucrose seeking regardless of the behavioral suppressor administered. Furthermore, systemic or intra-accumbal opioid injections rapidly dysregulate thalamostriatal ensemble dynamics, weaken thalamostriatal synaptic innervation of downstream neurons, and unleash reward-seeking behaviors in a manner that is reversed by genetic deletion of thalamic µ-opioid receptors. Overall, our findings reveal a thalamostriatal to parvalbumin interneuron circuit that is both required for the suppression of reward seeking and rapidly disengaged by opioids.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: